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МАТЕМАТИКА

м. и. вишик

О СИЛЬНО ЭЛЛИПТИЧЕСКИХ СИСТЕМАХ ДИФФЕРЕНЦИАЛЬНЫХ 
УРАВНЕНИЙ

(Представлено академиком С. Л. Соболевым 18 VIII1950)

В настоящей заметке вводится новый класс так называемых 
сильно эллиптических систем дифференциальных уравнений поряд­
ка 2m. Для случая одного уравнения порядка 2m требование силь­
ной эллиптичности совпадает с обычным требованием эллиптичности. 
Класс сильно эллиптических систем уравнений является сужением 
класса эллиптических систем в смысле И. Г. Петровского (S2).

Оказывается, что для однородной задачи типа Дирихле (будем ее 
называть нулевой краевой задачей, а соответствующие краевые усло­
вия— нулевыми краевыми условиями) для неоднородных сильно эл­
липтических систем уравнений в конечной области G имеют место 
все основные свойства, связанные с вопросами разрешимости, полу­
ограниченности и дискретности спектра, которые хорошо известны 
для случая одного эллиптического уравнения второго порядка. Эти 
свойства (подробные формулировки соответствующих теорем приве­
дены ниже) следующие: 1) нулевая краевая задача для данной сильно 
эллиптической системы порядка 2m Lu=f и нулевая краевая задача 
сопряженной с ней эллиптической системы L*v = g образуют фред­
гольмову пару, т. е. для этих двух уравнений имеют место три тео­
ремы, аналогичные трем известным теоремам Фредгольма; 2) для малых 
областей нулевая краевая задача для системы Lu = f разрешима, и 
притом единственным образом, для любой правой части /; 3) сильно 
эллиптический дифференциальный оператор L, рассматриваемый на 
функциях и, удовлетворяющих нулевым краевым условиям, является 
полуограниченным; 4) оператор L при нулевых краевых условиях 
имеет дискретный спектр, а для регулярных значений Л оператор 
L — ME (где Е— единичный оператор), рассматриваемый на функциях, 
удовлетворяющих нулевым краевым условиям, имеет вполне непре­
рывный обратный.

Известно, что эллиптические в общем смысле системы уравнений 
(определение см. в (’) или (2)) перечисленными свойствами не обла­
дают. А. В. Бицадзе (3) привел пример простой эллиптической системы 
с постоянными коэффициентами, для которой нулевая задача для 
однородной системы имеет ненулевые решения для сколь угодно малых 
кругов. Следовательно, для общих эллиптических систем не выпол­
нено свойство 2). Легко показать, что система Бицадзе, рассматривае­
мая на функциях, удовлетворяющих нулевым граничным условиям, 
является оператором, не ограниченным ни снизу, ни сверху. Таким 
образом, для общих эллиптических систем нарушается свойство 3).
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Отметим еще, что ни свойство 1), ни свойство 4) для эллиптических 
в общем смысле систем до сих пор не доказаны даже в случае по­
стоянных коэффициентов.

Рассмотрим систему линейных дифференциальных уравнений

т.н— у ya(ti"V/x, х \ • • • > ХА . , / . ...2j 2 % (-4 • • •, хп) —д д~------- H-- = /f(xb..., хл) (1)
7=1 (ft) к2т

(і =1,..., AZ), где суммирование производится по различным систе­
мам индексов (Аьk2m), принимающим значения от 1 до п; много­
точием обозйачен произвольный линейный дифференциальный опера­
тор от , и N порядка 2/н—1. Систему (1) можно короче 
записать в матричном виде

(ft) к2т

где х — (х^ ..хп), А^^"^ (х) —матрица ||а;;1
и (х)-вектор (щ (х),uN (х)), / (х) - вектор (f. (х),..., f ’(х)); 
многоточием обозначен произвольный оператор порядка <2от.

Представим матрицу Л( (Л) в виде СуММЫ симметрической и 
кососимметрической матриц

- W = + ...k2m)

где, очевидно, С=Ч2(А + А‘) и ЛГ=і/2(Д_Д’) (Д’— матрица, транс­
понированная (сопряженная) относительно А).

Определение. Система (1) (или (2)) называется сильно эл­
липтической в точке х = (хь..., хп), если матрица

2е'”-‘“'«5*,-5.» (4)
\к)

где C(Z'1’"ft2m)(x) —симметрическая часть матрицы поло­
жительно определенная для любых действительных чисел £і/.
не обращающихся одновременно в нуль. На кососимметрические 
матрицы -*2т) (х) и на коэффициенты при членах порядка <2/п 
никаких ограничений не налагается.

Система уравнений (1) называется сильно эллиптической 
в области О n-мерного пространства, если она сильно 
эллиптична в каждой точке x^G.

Очевидно, в случае одного уравнения (х) = 0, и условие
сильной эллиптичности совпадает с обычным условием эллиптичности.

Заметим, что система, сильно эллиптическая в точке х, всегда яв­
ляется эллиптической в точке х в смысле И. Г. Петровского (V); 
Действительно, легко показать, что из положительной определён­
ности матрицы (4) (^ + • • • + £2 =£ 0) следует, что определитель

= + =#0 (5)

при любых кососимметрических матрицах (х), т. е. система (1)
эллиптична в смысле И. Г. Петровского.
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Для сильно эллиптической системы (1) ставится следующая нуле­
вая краевая задача: найти в области С? «-мерного пространства ре­
шение и (х) = («j (х),.. •, ^(х)) системы (1), удовлетворяющее на гра­
нице Г области G краевым условиям

Mx)|r = ^|P--^Uo (в)

где и —нормаль к Г. В случае области G с вырожденной границей, 
состоящей из конечного числа кусков различных размерностей, на 
куске размерности « —s .требуется обращение в нуль функций «Дх) 
и их производных до порядка т——1 (ср. (4)).

Для сильно эллиптических систем с постоянными симметрическими 
матрицами с произвольными переменными кососимметриче­
скими матрицами K(kx (х) и произвольными переменными коэффи­
циентами при производных порядков <2тп (имеющими лишь некото­
рое число непрерывных частных производных) в любой конечной 
области G имеют место нижеприведенные теоремы, являющиеся по­
дробными формулировками свойств 1), 2), 3) и 4).

Для достаточно малых по диаметру областей все эти теоремы 
имеют место и при переменных матрицах (матрицы

и коэффициенты при производных порядка <2т произ­
вольны).

Для „больших“ областей G и переменных матриц (х) нам
удалось установить эти теоремы при выполнении условия, которое 
мы приводим после формулировок теорем (матрицы (х) и коэф­
фициенты при производных порядка <Д2т ив этом случае произ­
вольны).

Теорема 1. Уравнения
Lu=f, L*v = g, (7)

где L — сильно эллиптическая система (2), L * — сопряженная к L 
система, и = (uv .... uN) и v = (цр ..., vN) удовлетворяют нулевым 
краевым условиям (6), f=(fv fN} « g = (gv---, g^—произволь­
ные суммируемые в квадрате в области G функции, образуют 
фредгольмову пару уравнений, т. е. для них выполнены следующие 
три теоремы.

а) Альтернатива. Или данное неоднородное уравнение Lu = f 
имеет, и притом единственное, решение и(х), удовлетворяющее 
условиям (6) при всякой суммируемой в квадрате функции f (х), 
или однородное уравнение Lu = 0 имеет по крайней мере одно 
нетривиальное решение, удовлетворяющее условиям (6).

б) Если для первого уравнения (7) имеет место первый случай 
альтернативы, то он имеет место и для второго уравнения (7). 
Как уравнение Lu = 0, так и уравнение L*v = 0 имеют конечные 
числа линейно независимых решений, удовлетворяющих условиям (6), 
и эти числа одинаковы.

в) Во втором случае альтернативы необходимым и достаточ­
ным условием существования решения уравнения Lu = f (и, оче­
видно, должно удовлетворять условиям (6)) является ортогональ­
ность функции f ко всем решениям однородной сопряженной 
системы L*v = О, удовлетворяющим условиям (6).

Теорема 2. Пусть система (1) сильно эллиптическая в об­
ласти G. Для каждой точки xQG существует такая окрест­
ность V (х), что для всякой области G' с. V (х) нулевая краевая 
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задача разрешима, и притом единственным образом, для любой 
правой части f.

Отметим, что теорема 2 установлена для общих сильно эллипти­
ческих систем без каких-либо ограничений, кроме дифференцируе­
мости коэффициентов.

Теорема 3. Оператор Lu {см. формулу (2)), рассматриваемый 
на функциях и{х), удовлетворяющих на Г условиям (6), полуогра - 
ничей.

Теорема 4. Уравнение

Lu — \u — 0, (8)

где и (х) = (щ (х),..., uN {х)) удовлетворяет граничным условиям (6) 
лишь для дискретного множества значений имеет ненулевое ре­
шение {согласно теореме 3, все эти значения X расположены в од­
ной из полуплоскостей комплексной плоскости Л). Для всех 
остальных значений ). оператор {L—\Е)и, рассматриваемый на 
функциях и, удовлетворяющих условиям (6), имеет вполне непре­
рывный обратный.

Заметим, что из теоремы 4 следует теорема 1, но при доказатель­
стве теоремы 4 мы пользуемся теоремой 1.

В случае произвольной ограниченной области G и переменных 
симметрических матриц ^-^’(х) (матрицы {х) и коэффи­
циенты при производных порядка < 2m — любые) нами доказано, что 
теоремы 1, 2, 3 и 4 остаются в силе в том случае, если выполнено 
приводимое ниже функциональное неравенство, которое гарантирует 
положительную определенность главной самосопряженной части диф­
ференциального оператора (1).

Для краткости приведем это неравенство для случая систем вто­
рого порядка:

- - п
^х>м^

где и° (х) = (и° (х),..., (х)) — произвольная дифференцируемая век­
тор-функция, все компоненты которой обращаются в нуль в некото­
рой граничной полоске области G, — постоянная, не зависящая от 
и°{х), С м{х) — симметрические части матриц Д(*Л)(х), являющих­
ся коэффициентами в главной части системы (2); скалярные произве­
дения под знаками интегралов понимаются как обычные скалярные 
произведения соответствующих вектор-функций.

Нами доказано что при постоянных матрицах выполнение не­
равенства (N) является необходимым и достаточным условием для 

эллиптичности системы (1). В случае переменных матриц 
С ’т (х) для произвольных ограниченных областей G нам не уда­
лось, исходя из сильной эллиптичности, установить выполнение нера­
венства (N). Оказывается, однако, что из неравенства (N) следует 
сильная эллиптичность системы (1) в каждой точке x^G. Для доста­
точно малых областей и переменных матриц C(k'"-k2m) (х) из сильной 
эллиптичности системы следует выполнение неравенства (N).
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