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1. В настоящем сообщении рассматривается класс динамических 
систем, движения в которых могут быть описаны подстановками 
дифференциальных уравнений.  К указанному классу относятся мно­
гие типы часов и спусковых регуляторов, а также все типы систем 
автоматического регулирования, в которых имеются элементы с гисте­
резисными свойствами — устройства с электромагнитным реле и устрой­
ства, в которых действуют силы сухого трения или люфты, вызываю­
щие гистерезисные петли в характеристиках элементов регулятора 
и т. д. Здесь мы будем рассматривать системы, описываемые подста­
новками дифференциальных уравнений 2-го порядка.

*

2. Пусть дано уравнение.

* Мы рассматриваем уравнения, разрешенные относительно старшей произ­
водной.

x = F(x, %), (1)

в котором F (х, х) = ft (х, х) в области Gt (х, %) (Z = 1, 2, ..т), при­
чем каждая из областей Gt не заполняет всей плоскости х, х и каж­
дая из них перекрывается не менее, чем одной из остальных областей. 
Уравнение (1) можно записать в виде совокупности уравнений

х = ft (%, х) (І = 1, 2, ..., т). (2)

Пусть функции ft в областях Gt непрерывны и удовлетворяют 
условиям Липшица по х их. Будем считать, что по меньшей мере 
для одной из функций ft вид ее или область определения отличны от 
таковых для других функций ft-

Рассмотрим теперь динамическую систему, движения в которой 
поочередно описываются уравнениями (2). Пусть в начальный момент 
движение описывается z-м уравнением, причем для подобласти Q; на­
чальных значений Хм, хы через некоторый промежуток времени, 
зависящий от Хоі, Хы, точка (%, х) выходит из области Gi (через уча­
сток границы этой области, являющийся дугой без контакта семейства 
траекторий z-го уравнения) и пусть дальнейшее движение требует для 
своего описания k-vo уравнения. Далее, для области Qk начальных 
значений xok, xok через некоторый промежуток времени, зависящий 
от хпь, хпы движение начинает описываться р-м из уравнений (2) \JK \)К'
затем q-w и т. д.
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Характер движений в рассматриваемой динамической системе 
определяется, с одной стороны, видом и областями существования 

замена дифференциальных уравнений динамической Sm™mbcS 
рассматриваемых начальных значениях циклическаяг и 
циклической подстановкой т функций/- Т = (f f определяется

НИЙ (2) на свой кусок Хзовой ВДое из УРавне*
кусков фазовых плоскостей в соответстви^Хпппг полУчив™иеся т 
тех участков границ областей (г mmnc ВИИ С подстановкои Т вдоль 
такта для соответствующих срмайрт Р 16 являются Дугами без кон- 
изображающие точки выходят "за гранимой?™ ” Ч6р63 которые 
систему уравнений (2) на ИЦ областеи, и доопределим
можно сделать, условившись ияп™, репления- Такое доопределение 
точки на линии разветвления onnf ер’ Ч™ поведение изображающей 
скости, на котор₽ыГ™рХ^^ ге» куском фазовой пло- 
начальные условия в многократной cL«Me 2-Vhom™ образом, 
заданы тремя числами- адХш.,,,, системе 2 го порядка должны быть х скоростиX и “ значениями в начальный момент координаты

При колиХствеЗ Те™ многолистной Фазовой поверхности, 
образно применение метода точечных” ппАпйпКраТНЫХ систем пелесо- 
отрезков или дуг без контакта пРеобРазовании, причем выбор 
имеет смысл производить в ’гп Р ждающих Функции соответствия, 
задачи. В некоторых случаях пепТ л конкРетными особенностями 
функций соответствия Хпи ввес™ специальный вид
между границами каждого из X Рп Усиливается соответствие Нумер^Ха^ поверхности,
направлению часовой стоелки 6vnPM ' 1 до 4/и-го) по
туд через а, а соответс™ обозначать величину полуампли-
положение равновесия чУерез v^a) Л™ ^Р00™ 
установления вокруг начала 4 1огда процесс
подстановкой 4т функций /: РД может быть задан циклической

^2, . . ., Vim). (3)

^(^+1)~v2(a2m+2), v3(a2m+2)=v4(a2m+3),.,. (4)
. • . {aim) = Vim (а4т+1),

ч±“£“

число периодических
ствительных решений 
аі> а2, • ■ •, «2т:

M = fe) = C-. c<„_, (as.) „ (ai), (5)
^Ричем значения корней в каждом решении определяют величину 



полуамплитуд соответствующего периодического движения. Очевидно 
что 2m корней каждого s-ro решения а2л ..., а2ш 5 образуют 
циклическую подстановку Т2 = (а^ а2л ..., И2т>5). Пусть ’ найден ряд 
последовательных значений

типы часов могут рассматри- 
системы. Рассмотрение часов

Рис. 1

аи а2> • • •, Й2т-Ь «2т> йгт+Ь • • ., «4т-1, СЦт, а4т+Ь___ (6)
Если имеются устойчивые периодические движения, которым на 

многолистной поверхности соответствуют замкнутые траектории, охва­
тывающие начало координат, и начальное значение взято в области 
притяжения какого-нибудь из них, то ряд (6) будет периодически 
сходящимся (в смысле Кенигса (2)) с периодом сходимости 2m *.

* В этой связи см. работу В. Бовшеверова (х), который рассмотрел некоторый 
класс распределенных автоколебательных систем с помощью метода Кенигса — Леме- 
рея и показал для этого класса задач существование периодических движений различ­
ных индексов.

3. Как было сказано выше, многие 
ваться как многократные динамические 
до-галилеева типа (спусковых регу­
ляторов без собственного периода), 
рассмотрение обычных часов Гали­
лея— Гюйгенса (спусковых регуля­
торов с собственным периодом) как 
многократных систем дает адэкват- 
ную динамическую модель, позволяю­
щую представить простыми математи­
ческими средствами с хорошим при­
ближением движение в этих систе­
мах. В качестве примера мы рассмот­
рим модель часов до-галилеева типа 
(рис. 1).

Механизм образован ходовым ко­
лесом 1, оснащенным зубцами и ан­
кером 2. На ходовое колесо действу­
ет момент М заводной пружины или 
груза. При вращении его (колеса) 
зубцы встречают поочередно пр’авую
(3) и левую (4) палетты анкера 2. Положение анкера будем опре­
делять углом х = ф между полярной осью I с полюсом О и прямой, 
соединяющей ось вращения анкера и вершину правой палетты, считая 
угол положительным, если он отложен по часовой стрелке. Нетрудно 
видеть, что энергия передается анкеру на угле импульса [3. Введем 
обозначения: / — момент инерции анкера, М и МР — соответственно 
моменты пружины и трения, приведенные к анкеру. Предположим, 
что: а) абсолютные значения М и 7Итр не зависят от положения и ско­
рости; б) момент инерции ходового колеса пренебрежимо мал сравни­
тельно с /. В этих предположениях уравнения движения анкера при 
работе зуба соответственно на правой и левой палеттах имеют вид:

х = х),

x=f2(x, х),
(7)

(8)

где Л = -Ж" при л>0, — M при %<0; f2 = + М" при
*<0; f2= + M при х>0; М = |Af| — |Жтр|, М' = |/И| + |Мтр|.

Легко видеть, что записать уравнения (7) и (8) в виде одного 
уравнения х = ср(х, %), где ср (л, х) — однозначная функция своих аргу­
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ментов, невозможно, так как в пределах угла импульса р правые части 
в (7) и (8) отличны друг от друга. Все движения регулятора опис™ 
ваются циклической подстановкой дифференциальных7 уравнени^^^ '

Рассмотрим фазовую поверхность системы. Пусть зуб контактипмет 
с правой палеттои. Соприкосновение имеет место в пределах угла

возможные дви-
жения анкера при работе 
на правой палетте отобра­
жаются на куске фазовой 
плоскости, ограниченном 
осью ординат слева и пря­
мой х = а справа. Все 
траектории на построен­
ном куске фазовой пло­
скости в силу уравне­
ния (7) описываются урав­
нением

х = + У2М" (а — х),
х = — УУ/Ща^с), (7а) 

где а —значение х>0

ри» Траехто-

— V~2M"(b+х), х= + ]/2ЛГ^ + х)', (8а)
где & абсолютное значение х<0 при х = 0

приближаются к предельному циклу 7-2-5-^L? с перИодом
Т=2УТ$ hZ___+ । ^тР I

LF 1^тР1(1^1-|^тр|) I ^тр I (12И | -ы мтр |)
амплитудами а = й ' + । мтР I 

2|ЛМ ’ ₽
траектории, прикрытые сверху фазовой плоскостью
изображены штрих-линией)*. липкостью

и полу-

(на рис. 2 куски 

правой палетты,

Поступило
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