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МАТЕМАТИКА
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О СХОДИМОСТИ БИЛИНЕЙНЫХ РЯДОВ ИЗ СОБСТВЕННЫХ 
ФУНКЦИЙ

(Представлено академиком И. Г. Петровским 5 VI1950)

В ряде задач математической физики существенное значение имеет 
вопрос о сходимости билинейных рядов из собственных функций, 
т. е. рядов вида

у Щ Д) и{ (Q)

где {iii (Р)} и {X/} — система собственных функций и собственных 
чисел волнового уравнения Ей 4- Хн = 0 в некоторой области G с од­
нородными краевыми условиями, а р — произвольная степень.

При р = 1 получаем ряд Фурье для функции источника уравне­
ния Лапласа. Из работы (х) следует, что весьма существенны и ряды 
с дробными р. Вопрос о сходимости билинейных рядов исследован 
очень мало. Из общей теории известно только, что для двух и трех

измерений абсолютно сходятся ряды для второй итерации V и‘
1=1

и. (Р) и, (Q) ,и что ряды у ——----  сходятся в среднем к функции источника.
As 1=1 1

Вопрос об условной сходимости был рассмотрен для частного 
вида области «-мерного прямоугольного параллелепипеда в работе (2). 
В этой работе доказано, что для «-мерного прямоугольного паралле­
лепипеда билинейные ряды со степенью собственного числа р, заклю- 

„ п — 1 ' пченнои в пределах —2——> заведомо не сходятся абсолютно, 
но сходятся условно при суммировании в естественном порядке воз­
растания собственных чисел везде, кроме сколь угодно малой окрест­
ности источника.

В настоящей статье решен вопрос об абсолютной сходимости и 
о сходимости в среднем билинейных рядов для произвольной «-мер­
ной области G, допускающей функцию источника. На основании этого 
дается решение вопроса об условной сходимости билинейных рядов 
для «-мерных цилиндров с произвольным («—1)-мерным сечением.

§ 1. Начнем с исследования абсолютной сходимости билинейных 
рядов.

Теорема. Для произвольной п-мерной области G с однород­
ными краевыми условиями билинейный ряд вида

(г>0)
*=1
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сходится абсолютно в любых внутренних точках Р и Q области G, 
причем эта сходимость будет равномерной относительно Р, Q, 
когда Р, Q принадлежат некоторой внутренней подобласти G' 
области G.

Статья (2) показывает, что этот результат не может быть улучшен: 
предельный переход при г-» О невозможен.

Сформулированная выше теорема с очевидностью вытекает из 
следующей леммы:

Лемма. Если в некоторой внутренней подобласти Gw области G 
для любых положительных $ и 8 и любого номера N выполняется 
неравенство:

у »{(Р)
<М,

М~ некоторая константа, то в любой внутренней подобласти 
G области Gw выполняется неравенство

N и- (Р\

/=1 уЕ + т+8

где А& —эффективно вычисляемая константа, зависящая лишь 
от 8 и от рассматриваемой подобласти О(2).

Для доказательства леммы обратимся к теореме о среднем для 
произвольной «-мерной области G (3):

Здесь Sr (п —1)-мерная сфера с центром в Ро, целиком лежащая 
в G, Sr — поверхность этой сферы, равная const

Интегрируем обе части по dr от 0 до R, получим:

ОО (__

const-щ (Рф 2-------------------V—- Д = \ Ui (Р) dP.
v=0 v! (2v + n) Г <V +.

Здесь — «-мерный шар радиуса^ R с центром в Ро. Вынося Rn за 
знак суммы и положив R — 1 / у у{) можем записать:

const х?/2 Йо v! (2v + я) Г У v + Щ (Р) dP-, 
si

Qi—-шар радиуса 1 / с центром в Ро.
Обозначив константу в левой части в соединении с суммой число­

вого ряда через С, получим:

Щ (РА 
уПР J Ui(P)dP.

Qi
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Нам в дальнейшем нужно требовать, чтобы шар О/ целиком лежал 
в G(1). Это всегда будет выполняться, если считать точку Ро принад­
лежащей фиксированной внутренней подобласти С(2) области G(1) и 
отбросить конечное число номеров i. Для простоты мы изменим 
нумерацию и будем попрежнему считать t = 1, 2,...

-y-s
Возводя (2) в квадрат и умножая обе части на Хг , получим:

Д (Р \ сс ——8
С ЭДД. = \ \ т (Р) ut (Q) Хг2 dP dQ. (3)

. x7+s °/ qi

Просуммируем (3) по всем i от 1 до N:

Р 1 (Р \ р с ”__ s
С 2 = 2 \ \ «г (Q) dPdQ. (4)

Каждый шар ГД представляется в виде суммы внутреннего шара Q*+i 
и кольцевого слоя Ck между этими шарами. Если в правой части (4) 
перейти к кольцевым слоям, то легко преобразовать (4) к следую­
щему равенству:

N ,р . N-l . k п__g
С22^Н- = 2 ( \ dPdQ +

P r k \+ 2 \\ ^ui^UiiQ)^ dPdQ\ +
Ck i=1

+ $ J 2 Ui(P)ut(Q)\T^dPdQ. (5)
;=1

Полагая в соотношении (5) e = -j- + 8 и производя оценку инте­
гралов в правой части с помощью неравенства Буняковского, нетрудно 
доказать формулированную выше лемму, а следовательно, и теорему.

§ 2. Перейдем к исследованию сходимости в среднем.
Теорема. Для произвольной п-мерной области G с однород­

ными краевыми условиями билинейный ряд вида

/1----------ST (s > °) 
х7+г

сходится в среднем при интеграции по Q для всех значений Р 
внутри области G. Эта сходимость будет равномерной по Р, 
когда Р принадлежит любой внутренней подобласти G' области G.

Для доказательства достаточно заметить, что вопрос о сходимости 
в среднем эквивалентен вопросу об абсолютной сходимости ряда 
с удвоенной степенью X.

Это следует из равенства:
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Отсюда же следует, что результат не может быть улучшен: пре­
дельный переход при г—»0 невозможен.

§ 3. С помощью результата § 1 легко решить вопрос об услов­
ной сходимости билинейных рядов для га-мерных цилиндров с про­
извольным (га — 1)-мерным основанием.

При этом мы используем результат об абсолютной сходимости 
билинейного ряда для (га — 1 (-мерного сечения и тот факт, что цилиндр 
допускает разделение переменных. Доказательство производится 
с помощью преобразования Абеля методом, весьма близким приве­
денному в работе (2).

Здесь мы ограничимся формулировкой результата. Для «-мерного 
цилиндра с произвольным сечением и осью, параллельной хп, с про­
извольными однородными краевыми условиями на «боковой» поверх­
ности и нулевыми краевыми условиями на «верхнем» и «нижнем» 
основаниях билинейный ряд вида 

—— (е>0) (6)

сходится при суммировании в порядке возрастания собственных чисел 
в любой внутренней точке, для которой хп=/=^п, причем сходимость 
будет равномерной во всяком внутреннем коаксиальном цилиндре 
при | Хп — I &, где 8 сколь угодно мало.

В заключение приношу глубокую благодарность проф. А. Н. Тихо­
нову, под руководством которого сделана эта работа. Я также благо­
дарен за помощь в работе А. А. Самарскому и О. И. Панычу.
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