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В работе (J) было показано, что ток в проводе спиральной линии 
может быть записан в виде

з
/ =

п=1
(1)

где постоянные распространения wb ®2„ w3 определяются из решения 
трансцендентного уравнения. Для определения амплитудных коэффи­
циентов Іг, Ц необходимо решить задачу о возбуждении спираль­
ной линии сторонней э. д. с.*.

* Все остальные обозначения такие же, что и в работе f1).
** Напомним, что здесь, как и в работе (У мы требуем выполнения граничного 

условия не на всей поверхности провода спирали, а лишь на образующей линии, 
являющейся геометрическим местом точек касания спирали с цилиндром радиуса 
г0 + ии.

*** В работе р) в формулах (5), (6) ошибочно напечатано zx = L/sin 8.

Пусть возбуждающая э. д. с. приложена к бесконечно малому 
элементу провода в сечении L = 0. Тогда распределение приложенной 

э. д. с. Ест вдоль провода спирали может быть записано в виде 
8-функции **

^ = g(L) = ^8(L). (2)

При учете конечной проводимости спирали граничное условие при­
нимает вид, данный М. А. Леонтовичем:

EL = -Ecm + ^Ни. (3)

Здесь El — тангенциальная составляющая электрического поля на 
поверхности спирали, Ни — составляющая магнитного поля в направ­
лении, касательном к проводу и перпендикулярному направлению L,

Граничное условие (3) отличается от аналогичного условия, соот­
ветствующего свободным колебаниям идеально проводящей спирали, 
рассмотренной в работе (1), наличием (отличной от нуля) правой части. 
В работе (формула (5)) граничное условие записано в интегральной 
форме

ОО

EL1~\j(L)f(L1-L)dL=Q (1=2^0^***,  (4)
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Очевидно, в нашем случае интегральная форма граничного условия 
будет иметь вид J

СО
^J(L)f(L1~L)dL = ~Ecm + oHa. (За)

Выразив Ни через Полный ток в проводе и использовав обозначе­
ние (2), придадим равенству (За) следующий вид:

ОО

J — L) dL 4- g (36)

где

V =
тшасо

Это равенство можно рассматривать как 
определяющее распределение полного тока 
решение имеет вид (2)

интегральное уравнение, 
в проводе спирали. Его

м J v — Fi(w) ’ (5)

где

Л(®) = ^e№-f(L)dL,
—ОО

ОО

G(w)= \ e^Lg (L) dL = £.
—ОО

Таким образом,

' ' 2п J v — ^(w) (5a)
—00

Сделаем замену переменной A = w/sin3, z = L sin 3, после чего 

■/(*) = S sin 8 r e-ihz 
2* J v~F(h) 6)

где положено F (К) = Fr (®).
жен^мГ0’ выРажение для Bl(w) = F(A) равно левой части выра­
жения (4), если в последнем положить J (А) = и L, = 0 Последнее 

работе<1) (4)' (10»’

Fw~ 2 + + (7).
m=—со ' '

В этом\лучае/2вы^ В пРямолинейный провод, и
для тока в тонком ппямп™Л° падает с интегральным выражением 
В. В. Владимирский прямолинеином проводе, впервые полученным
490



Таким образом, задача определения полного тока (а следовательно, 
и амплитудных коэффициентов) сводится к вычислению интеграла

--------STiA dh-
V — Г (П)

При этом мы изменили знак в показателе числителя, что не меняет 
значения интеграла, так как F (А) — четная функция. Подинтегральная 
функция имеет полюса в точках hp, являющихся корнями уравнения

v- F(A)=0. (8)

Так как Rev>0, то для выполнения равенства (8) необходимо, 
чтобы Re F (h) 0, а отсюда Im А >0. Таким образом, полюса подинте­
грального выражения лежат в верхней полуплоскости. Положив, что 
среда, окружающая спираль, обладает некоторой весьма малой про­
водимостью, найдем, что в верхней полуплоскости расположены точки 
ветвления типа

hqm = k + — т.

gjhz
-----так, чтобы путь инте- V — г (п) J

г
грирования Г проходил по вещественной оси плоскости переменного 
Л от — оо до + оо, затем по бесконечной полуокружности, лежащей

Составим контурный интеграл =

в верхней полуплоскости, с обходом точек ветвления (линии разрезов 
определяются уравнением Re hqm = const (см. рис. 1)).

Так как внутри контура интегрирования содержатся только полюса, 
то интеграл N равен сумме вычетов Р относительно этих полюсов. 
С другой стороны, интеграл N можно представить в виде суммы 

е’Нг 
v-F(h) + Q = P,

где Q — сумма интегралов по линиям обхода разрезов. Так как для 
металла v очень мало, то пренебрежение этой величиной в знаменателе 
подинтегрального выражения в формуле (9) не скажется на точности 
вычисления вычетов. Вычисление Р и Q производим, используя зна­
чения, полученные в результате приближенного суммирования ряда (7) 
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при небольших углах подъема (8 <20°). Интегралы по линиям 
обхода разрезов дают составляющие токов, амплитуда которых убы­
вает с увеличением расстояния z от точки возбуждения как 1/lnz

Интегрирование по контурам, окружающим полюса, дает составляю­
щие токов, распространяющихся вдоль линии без затухания Послед­
ние представляют наибольший интерес, так как затухающие волны локализованы вблизи точки возбуждения, и в большинствеслучаев 
при проведении анализа применяющихся на практике спиральный ли 
нии амплитудой затухающих волн можно пренебречь Р 
результаты:1’ * 3 ПРИ различных значениях kr0 дает следующие

к rB < 1 
(область 

ускорений)

cos 8
1+ sin о

(регулярная 
область)

cos 8
1 + sin 3

cos 8
— sin

(область замедлений)

Skc 
L 7 £кс cos 8

------- 2-------

<gcA2 
ctg2 8

S^3 
к ctg2 8

/ = 0,577 vr^- v=Vh\~k‘i- ? = - .L. ln G p
* ctg8 H - ~ C

A3 и Д3 определяются из выражений:

In Д2г0 ~ 2 _ 2 tg S J 2( 1 + 2$ + -J- in kr. - 0,041)

In Д3г0 ~ + 2tg§) (1 + 2£) + -|“ln^r0 — 0,041).

небре^Тмпда™ WX областях можно пре-
провРода распространяется ^ліко одТТлІГс "ТтТ ВД°ЛЬ 
страненйя W что и наблюдается н? практике
интервале частот, при приближении у Л В яебольшом
амплитуда /., становится спявиимп" первой критической частоте, 

-ый
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