
Доклады Академии Паук СССР 
1950. Том 1XXIV, № 3

МАТЕМАТИКА
В. А. ИЛЬИН

ПРЕДСТАВЛЕНИЕ ФУНКЦИИ ИСТОЧНИКА ДЛЯ ПРЯМОУГОЛЬНИКА 
В ВИДЕ БИЛИНЕЙНОГО РЯДА ПО СОБСТВЕННЫМ ФУНКЦИЯМ

(Представлено академиком И. Г. Петровским 22 VII 1950)

В ряде задач математической физики существенное значение имеет 
вопрос о сходимости билинейных рядов из собственных функций, 
т. е. рядов вида:
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где {щ(Р)} и {XJ — система собственных функций и собственных чи­
сел волнового уравнения Дн + Хи = 0 в некоторой области G с одно­
родными краевыми условиями, а р — произвольная степень.

При р = 1 ряд (1) является рядом Фурье для функции источника, что 
следует из эквивалентности волнового уравнения однородному инте­
гральному уравнению и (Pj = X j К(Р, Q) и (Q) dQ, где ядро К(Р, Q) —

G
функция источника уравнения Лапласа. Ряды с другими и, в частности, 
дробными степенями р также существенны в математической физике. 
Они встречаются, например, в работе (1).

В настоящей статье изучается вопрос о характере сходимости 
билинейных рядов с различными р для прямоугольника и его «-мер­
ных аналогов.

§ 1. Для прямоугольника со сторонами а, b волновое уравнение 
Ди + Хи = О с нулевыми краевыми условиями решается методом раз­
деления переменных. Это приводит к ^системе собственных функций 
итп = у. sin тх ■ sin ~ пу и системе собственных чисел 
. _ 2 ТтХ п2 X
*тп А а2 + Ь* ) ■

Ряд (1) с произвольным р в этом случае имеет вид:
ОО
2 > (2)

т, л=1
где

(р) 4 sin 1Гтх'sin ~Т пУ sin sin -T~ nV

у Вопрос о сходимости этого ряда при р = 1 рассматривается в книге (2). 
Здесь делается ошибочный вывод об абсолютной сходимости этого 
ряда везде, кроме сколь угодно малой окрестности источника. Нами 
сейчас будет доказано,что ряд (2) при р = 1 не сходится абсолютно 
ни для какой пары внутренних точек прямоугольника. Отсюда будет 
следовать, что речь может итти лишь об условной сходимбсти этого 
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ряда, причем, если даже этот ряд сходится условно, то существен 
порядок суммирования относительно тип. Поэтому записывать с по­
мощью этого ряда функцию источника, не указывая порядка сумми­
рования, нельзя, ибо условно сходящийся ряд можно соответствую­
щей перестановкой членов заставить сходиться в данной точке к 
любому наперед заданному числу.

Перейдем к доказательству абсолютной расходимости ряда (2) при 
р = 1. Докажем, что ряд

СО

2 । «^ । (з)
т, п=1

не сходится абсолютно ни для каких внутренних точек прямоуголь­
ника (%, у) и (5, >))•

Докажем расходимость ряда (3) в области
г/3 а<х<й(1-г), аеС^^Д/зП,
2/з

здесь е сколь угодно мало. В этой области ^-^л/2; у^у/Я. Рассмотрим 
две последовательности

J sin (26— 1) 11 , (4)

J I sin ~ тх I1 . (5)
U а | J (m == 1, 2. 3,...)

Будем называть шагом последовательности разность аргументов 
двух последовательных членов этой последовательности. Шаг (4) равен 
тг, а шаг (5) равен ~ х, и, так как —s), то шаг (5) не пре­
восходит (тс — sir). Поэтому каждому члену (4) можно поставить в 
соответствие член (5) такой, чтобы аргументы ^образа и прообраза 
отличались не более, чем на ---- т- е- на полшага (5).

Если ть ..., тк, ... — номера членов (5), поставленных в со­
ответствие членам (4), то, по условию соответствия,

— m* х -у (2А — 1) 2 2/

Поэтому заведомо:
sin ~ тк х

Шаг последовательности

етг
SIH -у • (6)

sin — тк х | не будет постоянным. Не-
трудно убедиться, что он не превосходит (2тс — ел). Но так как в
рассматриваемой области -у, то шаг sin mk I не превос-

ходит (тс —-у j. Поэтому, рассматривая, как и выше, две последова­
тельности:

sin (2р — 1) I \
2 | J (р = 1, 2, 3, . ..)

sin ~ тД I У
( а | J (к = 1, 2, 3, ...)

(7)

(8)

мы можем каждому члену (7) поставить в соответствие член (8) такой, 
чтобы аргументы образа и прообраза отличались не более, чем на
Гу---- т‘ е> на полшага (8)-
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Если тъ т3, тр ... — номера членов (8), поставленных в со­
ответствие членам (7), то, по условию соответствия,

|ут,5- ^(2р-1)|<(4-=). (9)

Отсюда заведомо:
sin — трхI • I sin — тЛ I >sin2 ~ . (10)

а р | а р \ 4

Из (9), отбрасывая етг/4, получим следующую оценку для но­
мера тр-.

mp<Zpls- (Н)

Точно так же осуществляется выбор таких пъ п2, ..., п/р ..., что

sin ПдУ | • | sin ~ Пд^ >sin2 ^- , (12)

причем для номера tig имеет место оценка:

nq<q^- (13)

С помощью оценок (10), (11), (12), (13) расходимость ряда (3) в 
рассматриваемой области делается очевидной, если суммировать этот 
ряд только по тр и nq:

СО со со

2 । «^ । > sm4 2 2 рз 1 •
т' 9=1 (Sp + (Ь^)

От рассматриваемой области нетрудно перейти ко всему прямо­
угольнику.

Теорема обобщается на случай п измерений. Доказывается анало­
гичным методом, что для га-мерного прямоугольного параллелепипеда 
билинейный ряд вида

у щ (Р) и{ (Q) 
. d

не сходится абсолютно ни для какой пары внутренних точек Р и Q 
этого параллелепипеда.

§ 2. При исследовании условной сходимости билинейных рядов 
существенную роль играет порядок суммирования относительно 
т и п. Будем исследовать сходимость билинейных рядов при сумми­
ровании в естественном порядке возрастания собственных чисел.

Теорема. Билинейный, ряд из собственных функций прямо­
угольника вида 

09

2 <14>
т, п=\

где г— любое положительное число, сходится и притом равномерно 
относительно (х, у) и (5, vj) при суммировании в порядке возраста­
ния собственных чисел везде, кроме сколь угодной малой окрест­
ности источника, т. е. когда р [(х, _у), (^, тД] 8, где 8 сколь угодно 
Мало.

Для доказательства достаточно оценить произвольную частную 
сумму ряда (14). Если из этой частной суммы выделить члены с фи-
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ксир0ванным т, то сумма этих членов просто оценивается с помощью 
преобразования Абеля ( ). Суммируя затем по всем т, докажем равно­
мерную сходимость ряда (14) при | х-? | >8. Теорема окончательно 
будет доказана, если провести те же выкладки относительно индекса п.

Заметим далее, что, пользуясь преобразованием Абеля можно 
доказать условную и равномерную сходимость ряда (14) не только 
при суммировании в порядке возрастания собственных чисел но и 
при таком порядке, когда суммирование производится сначала по всем 
п от 1 до„ оо для каждого значения т, а затем по всем т от 1 до оо. 
Последний порядок будем называть суммированием по строкам.

Следствие. При е равном 1/2, в силу полноты системы, имеет 
место билинейная формула для функции источника:

sin а /ЛЛ-sin — m^-sin -у- лу-sin -у- Пу 
пГ2 п* —————

суммирование относительно т и п в порядке возрастания собствен­ных чисел или по строкам, Р [(х, у), & ^>8, гдРе 8 сколь угодно

Аналогично доказывается, что для «-мерного прямоугольного 
параллелепипеда везде, кроме сколь угодно малой окрестности источ­
ника, сходится билинейный ряд вида

(А) щ (Q) 
Z Л-1 ,

1=1 2 + в
(е>0)

при суммировании в порядке возрастания собственных чисел или по 
строкам.

Итак, для интервала степеней собственных чисел от до — би­
линейные ряды заведомо не сходятся абсолютно, но вместе с2 тем 
сходятся условно, при суммировании в естественном порядке возоа- 
стг.ния собственных чисел или по строкам. Этим самым показано, что 
теорема Гильберта — Шмидта не исчерпывает всех вопросов о сходи­
мости билинейных рядов из собственных функций.

В заключение я считаю своим приятным долгом принести глубо­
кую благодарность проф. А. Н. Тихонову, под руководством которого 
сделана эта работа. Я также благодарен А. А. Самарскому и О. И. Па­
нычу за помощь в работе. '
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