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МЕНЯЮЩИМИСЯ ПАРАМЕТРАМИ

(Представлено академиком А. А. Андроновым 14 VI 1950)

В настоящей заметке излагаются некоторые результаты теорети­
ческого исследования флуктуаций в системах с периодически меняю­
щимися параметрами, проведенного с помощью уравнения Эйнштейна — 
Фоккера, и некоторые экспериментальные результаты, иллюстрирую­
щие выводы теории.

1. Рассмотрим линейную систему с периодически меняющимися 
параметрами, поведение которой описывается без учета случайных 
толчков динамическим уравнением

И к
d7 =a(t)x + b(t), (1)

где a(t) и b (t) — периодические функции периода Т. Как известно, 
статистические явления в такой системе могут быть описаны с помощью 
уравнения Эйнштейна — Фоккера

= + (2)

где с (0> 0 — параметр, описывающий случайные точки в системе, 
является в интересующих нас случаях функцией времени периода Т*.

Основное решение уравнения (2) (х): 

ехр ।

W (х', f, X, t) = (3)

представляет собой плотность вероятности перехода системы из состоя­
ния х’ в момент К в состояние х в момент t.

Будем называть систему устойчивой по вероятности, если для 
любого положительного &<Д мы можем указать такую ограниченную 
область 5 значений X, что вероятность нахождения системы в этой 
области

$ w (х', f; х, t)dx)>S 
s

для всех £ начиная с некоторого Для того чтобы наша система 
была устойчива по вероятности, необходимо и достаточно, чтобы

* Все дальнейшее легко обобщить на случай, когда периоды функций a (t> b(l} 
с И) различны. v о
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«о* f^a(t)dt<0 *• (4)
т

Мы будем исследовать именно этот случай. При условии (4) суще­
ствует предел

lim w « t'; х, t) = w (х, t), (5)
>оо ' '

представляющий плотность вероятности, устанавливающуюся в системе, 
независимо от состояния х', в котором находилась система в момент V. 
Этот предел равен

ехр/-к-ДЖ21
W (х, У) = -—- —-2 --- с IQ\

/
Н-°° / J a (z) dz

x(t) = С xw (х, t) dx = C b(y)ey dy, (7)

/ 2 f a (z) dz

D (t) = № — x2 = 2 c (y) e y dy (8)

периодические функции периода T. Следовательно, w (%, t) периоди­
чески зависит от времени (предельная периодическая вероятность).

2. Пусть для случайной величины х (t) определена плотность веро­
ятности переходов w (х', f; х, t), обращающаяся при t'—оо в w(x t) 
Рассмотрим случайную величину X [х (^)] = X(t). В интервале 0<г‘<т 
она может быть представлена интегралом Фурье с комплексной ампли­
тудой

^(f) = \X(t)e-2^dt.

Отсюда

(/) с; (/) = J dt' J ^(0^(0 e~l2nf ^dt, (9)
о о___  __  +=°

= 55 х (f) X (/) W (х', t')w(x', t'; х, tjdxdx' (10)
—ОО

(для t <t', для нужно в (10) поменять местами t' и t\
В общем случае спектр случайной величины X(t( состоит из 

дискретной и сплошной части (дискретные линии на фоне сплошного 
спектра**). Если существует предел

lim 2МЛ£(/)
= G(/), (11)

то он представляет спектральную плотность сплошного спектра вели­
чины X(t\ Если для некоторых ft существует предел

lim 2ст (/) с: (/)
Т2 - gi, (12)

п-„Хи«Х^На“ динамическая система, описываемая уравнением (1), может иметь 
слу чайных5 скачковЫе "° ЛяпуновУ’ и ПРИ «о = 0. В этом случае особенно ясна роль 

рой получается при рассмотрении спектра импульсов задан-
ХчХ™^^ В = = 1,2,3,^ где случайная 
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то он дает интенсивность дискретной линии частоты ft. Таким образом, 
интенсивность / в полосе частот от j\ до /2 будет равна

Нас будут интересовать спектры величин х и х2. Вычисление дает
t
J a (z) dz 

хх' = е*
f а (г) dz 

х'х — е*

(13)
где штрихи означают, что величины взяты в момент f. Исследование 
пределов (11) и (12) показывает, что спектр х имеет дискретную часть 
тогда и только тогда, когда x(t) не равно тождественно нулю; при 
этом дискретная часть спектра х совпадает со спектром x(t\ За сплош­
ную часть спектра х ответственны первые члены выражений (13). Фоома 
сплошного спектра может быть различна: рис. 1, о показывает пример­
ный вид спектра для рис. 1^_для ^<1/д0. Вычисле­
ние дает, далее, для f </ ' °

_____  ( 2 J a (z) dz 

х2х'‘ = \2е *'
J a (z) dz 

D" + 5Z (14)
Для t<f нужно поменять местами в формуле (14) штрихованные 

и нештрихованные величины.
_  За дискретный спектр величины х отвечает член х' 
х2 (в отличие от х) всегда 
жит дискретные состав­
ляющие (независимо от 
того, есть ли они в спект­
ре х). За сплошную часть 
спектра ответственны 
члены, заключенные в фи­
гурные скобки. Как и 
сплошной спектр х, 
сплошной спектр х2 имеет 
при Т^>—1/а0 вид, по­
казанный на рис. 1,а, а 
при Т<^-~ 1/а0 на рис. 1,5.

отлично от нуля, спектр х2 всегда содер-
• х2. Так как

Рис. 1

3. Пусть L, С, г — индуктивность, емкость и сопротивление колеба­
тельного контура суперрегенеративного приемника, Л4 —коэффициент 
ооратной связи, S —крутизна лампы, Е—вспомогательное переменное 
напряжение на сетке периода Т. Пусть (что всегда имеет место на 
практике):

1
VEc

2л
Т ' (15)

При этом амплитуда х колебания в суперрегенераторе в линейном 
режиме приближенно удовлетворяет, если не учитывать случайные 
толчки, уравнению вида (1), а если их учитывать — соответственно 
уравнению вида (2), причем

a(t)^[S(E)M^0~d], (16)

b (t) — периодическая функция t периода Т, если частота принимаемого- 
синусоидального сигнала

(k = 0, 1, 2,...) (17)
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(резонанс) и b(t) — периодическая функция периода Т^Т или почти 
периодическая функция, если условие (17) не выполняется. В частном 
случае, когда сигнала нет,

Ь (t} = 0.

Именно этот случай был подвергнут экспериментальному исследова­
нию. Напряжение с контура суперрегенератора подавалось через квадра­

тичный детектор на 
вход гармонического 
анализатора, представ­
ляющего собой супер­
гетеродинный прием­
ник с очень узкой 
полосой пропускания 
(эффективная поло­
са 30 гц). Были полу­
чены для разных ре­
жимов спектры вели­
чины л2, показанные 
на рис. 2 и 3, на кото­
рых по оси абсцисс 
отложена частота в кгц, 
по оси ординат — лога­

рифм отклонения квадратичного прибора на выходе анализатора в 
условных единицах. Для сравнения на спектрограммах нанесена пунк­
тиром частотная харак­
теристика анализатора. 
Из спектрограмм видно 
существование дис­
кретных линий*  а так­
же сплошных спектров 
обоих типов, показан­
ных на рис. 1, а, б-

* Собственно говоря, на основании экспериментальных данных мы можем лишь 
утверждать, что ширина этих линий мала по сравнению с шириной полосы анализа­
тора. Мы их считаем дискретными на основании теории.

4. С помощью урав­
нения Эйнштейна — 
Фоккера удается также 
решить методом после­
довательных прибли­
жений некоторые во­
просы, касающиеся 
флуктуаций в слабо 
нелинейных системах 
с периодически меня­ Рис. з
ющимися параметрами.
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