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М А ТЕМА ТИ ЧЕСКА Я ФИЗИКА
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ОЦЕНКИ ПРОИЗВОДНЫХ ФУНДАМЕНТАЛЬНЫХ ФУНКЦИЙ

(Представлено академиком В. И. Смирновым 1 VII 1950)

1°. Пусть Q— область трехмерного пространства (х1, х2, х3), огра­
ниченная гладкой замкнутой поверхностью S. Пусть vm(x') и А2 
[т = 1, 2,...) ортогональная и нормальная система фундаментальных 
функций и собственные числа уравнения Av + X2 v = 0 при условии 
■у = о (А — оператор Лапласа). Наша цель доказать, что при некото­
рых условиях, относящихся к гладкости S, в замкнутой области 
Й — Q + S верны неравенства:

\Dkvm\<AkK^, (!)

где Dk производная порядка k, и ЛА^>0—некоторые числа, 
причем Ак зависят лишь от вида области Q.

2 ■ Пусть S поверхность Ляпунова. Примем некоторую точку 
M0^S за начало местной системы прямоугольных координат х, у, z, 
направив z по внешней нормали к S. Тогда в некоторой окрестности 
^х2 +y'-^^d точки УИ0 уравнение поверхности имеет вид: z = a(x, у). 
Пусть ы (х, у/) имеет непрерывные производные до порядка k 1, 
причем абсолютные значения всех производных w (х, у) не превосхо­
дят числа Л>0. Если числа d и А не зависят от положения точки Мп 
то будем записывать: S£Jlk.

Всякая функция у, заданная на S, в окрестности точки Af0€S 
представима как функция ^х, у) местных координат. Производные 
по х и у будем обозначать D. Если

|О* (х, у) | < А, | у (х, Vi - [Ъ^ (х, у, | <

< Л (/(X, - х2у + ~y^Y (£ = 0, 1,..., Z; 0<а<1),

где р^х2 + (I = 1, 2), а Л>0 и а не зависит от выбора Мо, то 
будем записывать: y€Lipa(Z, Л). Так же будем записывать, если 
ц(хх, х2, х3) задана в Q и ее производные до порядка Z удовлетворяют 
аналогичным неравенствам. Очевидно, если у € Lip a (Z, Л) в Ц то ее 
предельное значение на 5 также принадлежит Lipa(Z, СЛ), где С не 
зависит от выбора у.

Потенциалы: объемный по Q, простого и двойного слоев по S 
с плотностью у. будем обозначать Р(у), V(y), ^(у). Прямое значение 

(у) на $ обозначим U7(y). Через Г (/) обозначим такую гармони­
ческую функцию в Q, ЧТО Г(/)І5=/.

3°. Перечислим ряд теорем и формул, приведенных в книге (Ч. 
Эти теоремы верны, если S£J12. '
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Теорема I. Если Ы<Л в Ц то P^CLipa (1, СА) в О 
((Ч стр. 82—85). н v ’

Теорема II. Если p.€Lipa(0, Л) в Ц то ^(^GLip a(2, СА) в Q 
К1), стр. 91, 289).
„7е°РеГ Ш- Если [^<А на S, то W^C^GLip a(0, СА) на S 
Ц1), стр. 49).

_Теорема IV. Если p.€Lipa(O, Л) на S, то У(и)€ЫраЛ СА) 
в U ((х), стр. 66, 256).

В теоремах I и III а любое < 1, и выбор а определяет выбор С. 
т/"Р^м тРи формулы для первых производных от 
L (W> и/(р.) и /др.), если плотность pi дифференцируема.

W(n)
-^Г'= — ц/fcosnx1) + ^(цсоэпх1) ((!), стр. 67); (I)

~дх^ — (cos ПХ2 • 2)Л1 ц — cos ИХ1 • Dx> ц) —

Hcosnx4.^-созпхЗ-^ц) ((1), стр. 72); (II)

~ pbcosnx') ((i), стр. 94)) (Ш)

где /<- средняя кривизна поверхности, а Охщ— проекция на ось х1 
градиента в точке /M0€S функции ц(х, у), рассматриваемой в местной 
системе координат для точки Му п —внешняя нормаль к поверхно- 
СТИ о. г

4°. Докажем (1), основываясь на двух теоремах, доказательство 
которых приведем позже.

Теорема 1. Если и€Ыра(/, Л) в & и S Е Л1+ь то Р(и)Е 
€Ыра(/+2,СЛ) в Q. У ’

Теорема 2. Если на S и то Г(ЛС
€ Lip a (/, СЛ) в Q.

В этих теоремах С не зависит от выбора ц и /.
Известно, что vm в Q имеет непрерывные производные любого по­

рядка и удовлетворяет однородному интегральному уравнению ядоом 
которого служит функция Грина. Отсюда следует: ЛХ2 . Поэтому
по теореме I: = Р vm) € Lip a (1, СА^т). Кроме того, \ит + X2m vm = 6 
и, значит, vm = ит - Г (ит ). В силу теоремы 2 Г (ит\ ) 6 Lip a (1, CI ЛХ4 ), 
и поэтому T^Lip а(1, ^ЛХ^). Допустим, что

^Lipa^A- 1, С^Х^+2). (2)
Тогда Xm nm6Lipa(2^ 1, Скк-^4) и из теоремы 1 следует, что 
LiP *(2 k 4- С; Х^+4^ а по теореме 2, Г (ит |5) € Lip a (2 k + 1, С". Х2*+4 ). 

огда vm — um Г («,„ |5) G Lip a (2 £ + 1, Ck+iT^+4)t и, так как (2)
*ТЛ то верно для всех k> для которых 2А+1</ 

еслилелг+5. Неравенство (1) доказано.
тичрр;^ль3уясь Ф°РмУлами (О и <П) и теоремой IV, применяя матема­
тическую индукцию, докажем теоремы.

Пусть k^l и 5еЛ1+1. Тогда-.
Теорема 3. Если Lipa (^, Л) на S, то WW Lip a (£, СЛ) в a 
1еорема4. Если a.{k, А) на S, то V(u)6Lip a(£ + 1 СА) в И 

ииз(ЬопТВИТе/тО’ еСЛИ peLlpa(1’ Л)’ то cosnx'LDyta£ Lip а (О, СЛ),’
з формулы (II) следует в силу теоремы IV, HTodUZ^/^ELip а(0, С, А), 



откуда следует IF(p.)€Lip а(1, С2 Л), если учесть | U7(p.) |< С max | р |. 
Далее по формуле (I) и теореме IV находим: если Lip а(1, Д), то 
<Ж(р)/dx€Lip а(1, СА), и отсюда заключаем: Й(р)€Ьір а(2, Сг А), и 
теоремы 3 и 4 для k — 1 доказаны. Если допустить, что теоремы 3 и 4 
верны для некоторого k' 1, то, пользуясь формулой (II), доказываем 
теорему 3 для k' + 1, а затем, пользуясь формулой (I), доказываем тео­
рему 4 для Е + 1, если Е + 1 Теоремы 3 и 4 доказаны.

6°. Для доказательства теоремы 1 воспользуемся теоремой 4 и фор­
мулой (III). Если p€Lipa(l, Л), то др./длг€Ыр а (О, Д) и, по теореме II, 
Р (др. / дх1) € Lip а (2, СА). Кроме того, р cos пх‘€ Lip а(1, С^ Д), и, по 
теореме 4, V(p cos nx‘)€Lip а (2, С2 Д), откуда, в силу формулы (III), 
дР(р) / дх‘ё Lip а(2, С'А). Учтя, что | ^(р) |<5max | р|, затем находим: 
Р (р)€ Lip а (3, С А), и теорема 1 для Z=1 доказана. Допустив, что 
теорема 1 верна для Z'^1, и используя лишь теорему 4 и форму­
лу (III), доказываем, что теорема 1 верна для I' + 1. Таким образом, 
теорема 1 доказана.

7°. Рассмотрим интегральное уравнение, которому удовлетворяет 
плотность потенциала двойного слоя, решающего внутреннюю задачу 
Дирихле: <

ц + 2^(р) = 2/. (3)

Как известно, при непрерывной / ц также непрерывна.
Теорема 5. Если /€Lipa(Z, А) и SEJh+s, то p€Lipa(Z, С А).
Теорему 5 докажем позже. Сейчас, пользуясь теоремами 5 и 3, 

докажем теорему 2. Действительно, если ц есть решение (3), то 
Ц7(р.) = Г(/) и, следовательно, если /€Lipa(Z, Д), то, в силу теорем 5 
и 3, заключаем: Г (/) = И7(р.)€ Lip а(/, Q Д), если Теорема 2
доказана.

8°. Для доказательства теоремы 5 достаточно доказать теорему:
Теорема 6. Если р. € Lip a(Z — 1, Д) и 5€Д+а то W (ц)€ Lip a(Z, С А)- 
В самом деле, если / непрерывна, то и ц непрерывна, и тогда, по 

теореме III, И7(ц) € Lip а'(О, СД), где 0<а <Д—любое число. Если 
/€Ёіра(0, Д), то из (3) следует ц€Еіра(0, QA), и теорема 5 верна 
для Z = 0. Допустив, что p.€Lip a(Z —-1, С А) и /€Lipa(Z, Д), в силу (3) 
и теоремы 6 заключим, что [x€Lipa(Z, С'А), если StJIi+5, и теорема 5 
доказана. Осталось доказать теорему 6.

9°. Пусть /ИДА и (х, у, z) — местные координаты с началом в Ма. 
Пусть т) (^) имеет непрерывные производные любого порядка в [0; оо], 
равна 1 при ^<1, равна 0 при £>3/2 и монотонна в [1; 3/2]. Положим 
р. (х, у) = ц (х, у) т) I---- 9d J 1 и будем считать ц(х, т)==0 вне круга 

~ /Vх2 I v2 \х2 + У2 d2. Аналогично положим со (х, у) = со (х, у) т; у ) и бу­
дем считать ее заданной на всей плоскости и со (х, у)=0 вне круга 
х2 + у2 <С 9/td2. Тогда, обозначая Do ту окрестность точки Мо на S, 
для которой х2 + у2 < d2, запишем

5—Da Do Dq

Первый и второй интегралы являются аналитическими функциями 
® той окрестности точки Л40, для которой х2 Д у2 ^d2/4, и эти интег­
ралы € Lip 1 (Z, Дг), где Z = 0, 1, 2,..., Дг Сг max | ц |. Теорема 6 будет 
доказана, если докажем, что третий интеграл, который обозначим W3 (ц), 
принадлежит Lipa(Z, СА), если ц€Еір a (Z — 1, Д) и SEJIi+s. Пусть Q

2 07



И Qi — точки плоскости (х, у), р — расстояние между Q и Qb 0 — угол 
между осью ох и QQV Тогда ^(р.) примет вид, если х2 + y^^d^A-

= $ $ И (-^ + pcosO, т+psin 0) Y (л’,у, р, tydpd®, (4) 
о о

где Т(х, у, р, 0) имеет непрерывные производные до порядка z 4-2 по 
всем аргументам, если ЗСЛ1+5, причем ЧДл-, у, 0, 0) имеет период тс по 9.

Пусть p€Lipa(Z 1, Л). Тогда D1-1 U73 (р) есть сумма интегралов 
вида г

2тс оо

Qi-r-i ^.(x + pcosQ, у + р Sin 0)X
О о

хЬгТ (x,y,p,Q)dpdG (r = 0, 1,...,/ — 1). (5)
Докажем, что интегралы (5) €Lipa(l, С'Л) Интегралы (5) имеют 

структуру интеграла (4) и достаточно доказать: если р 6 Lip a (О, Л), то 
U73 (р) 6 Lip a (1, СЛ). Переписав (4) в виде (интегралы по области 
— 00 On Т1<оо)

(и) Р (-*4,Т1) — ) dxx dyx + р (лр Уі) L (х, у, р, 6) dxx dy.,

убеждаемся, что Z>U73 (р) есть сумма двумерного сингулярного интег­
рала (2) J

р р

f(x,y, 0)d9 = 
хо '

и интеграла
\ 5 И (%1’ -V1) -’.И’ ДД °) dx± dy*.

Последний интеграл принадлежит Lip a (О, СЛ), так как КЛх,У,р 
имеет непрерывные первые производные по х, у. Используя известные 
результаты теории многомерных сингулярных интегралов (2) заклю- 
чаем,что сингулярный интеграл € Lip a (О, СЛ), и теорема 6 доказана.

10 . В статье^ Лихтенштейна (3) имеется утверждение, аналогичное 
теореме 2 нашей статьи, но ссылки Лихтенштейна на некоторые рабо­
ты (Ляпунов, Корн, Петрини) представляются нам недостаточными 
для оправдания утверждения.

Использованные нами результаты теории потенциала и теории син­
гулярных интегралов верны и для /z-мерных пространств (/z Д>3), и 
поэтому все полученные нами результаты без существенных изменений 
переносятся на многомерные пространства. Для п = 2 рассмотрение 
вопроса упрощается.

Поступило
27 VI 1950
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