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ПРОВОДИМОСТИ 

(Представлено академиком А. В. Винтером 29 VI 1950) 

РЗССМОТРИМ сначала линейное потенциальное поле с однородными 

граничными условиями, причем через все эквипотенциальные проходит 
один и тот же поток. В некоторых случаях (пластина, круглая труба 
шаровой слой) форма эквипотенциальных линий может быть опреде- 
лена из соображений симметрии. Поток © через любую эквипотенци- 
альную поверхность равен 

Q=—2(t)% f(n), ( 

причем A= A(f) — коэффициент проводимости, являющийся непрерыв- 
ной функцией потенциала f, л — нормаль K эквипотенциальной поверх- 
ности, f (п) — площадь последней. 

Из (1), применяя теорему о среднем значении интеграла, можно 
получить формулу (2) для потока и уравнение (3) распределения 
потенциала 

о- 0640 @ 

(3) 

Здесь & и & — значения потенциала на границах поля, т. е. при 
п= , и л= , 

РЕ Е 
па (О бйс. ра ННЙ =\ =z @ 
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Формулы (2) и (3) справедливы для пластины, круглой трубы и 
шарового слоя и могут быть конкретизированы для каждого из упо- 
мянутых случаев путем вычисления „форм-факторов* Га и Г. Способ 
усреднения A не зависит от геометрической конфигурации. 

ПуСТЬ граничные контуры плоского потенциального поля, на которых 

заданы значения потенциала & и fy могут быть отображены с помощью 
аналитической функции Р (2) комплексного переменного 2 = х - iy на 
плоскость Р(г) так, чтобы эти контуры после отображения образовали 
две линии, параллельные одной из координатных осей ф или Ф. 
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Заметим, что функция Р(2) = ф + &@ удовлетворяет условиям 
Д’Аламбера — Эйлера, т. е. дф/дх =0y [ ду и дф | ду = — 0y / дх, в силу 
чего 

№е=0, V'¢=0 (5) 
Отобразив упомянутым выше способом плоскую фигуру (с плоско- 

CTH Xy) в виде пластины на плоскости ф}, применим K последней 
формулу (3), положив в ней л = ф; л, = фу; па = P, *. При этом получим 

(6) 

Уравнение (6) распределения потенциала в пластине на плоскости 
9y при A =A(f) выражает ф как функцию & При этом ¢ удовлетворя- 
ет уравнению Лапласа при A = A(f), написанному для пластины в пло- 
CKOCTH @, T. €. 

@ [ @ >® @а{ 
7 (&) РОИ = (@) 

Легко mokasaTh, что # удовлетворяет также уравнению Лапласа 
при ^ == ) (#) на плоскости XY, т. €. 

Действительно, так как 
o _ @ дф, дЕ _dt д% o, AT YN, /YN, @ о, 
в-ща) эца Vi (0 + () а% © 

={G+ (Иа G +r 2р +r0vy. ©) 
Правая часть (9) в силу равенств А*ф — О и (7) тождественно равна 

нулю. Поэтому & удовлетворяет уравнению (8). Граничные же условия 
удовлетворяются в силу самого преобразования Р(г), которое отобра- 
жает граничные эквипотенциальные линии # =1, и ё== ё B виде пря- 

мых G =0 и ф =y (или 9 = 9; и 9 = ). 
Выразив ф как функцию х и y, вид которой определяется видом 

функции F(2) мы получим искомое уравнение распределения потен- 
циала в плоскости Xy при A =* ) (0). 

Из изложенного следует, что эквипотенциальные линии имеют 
одинаковую форму при A =A(£) и при A = const; различие заключается 
лишь в „отметках“ этих линий. 

Применив к пластине в плоскости фф формулу (2), получим 

г— )y (10) 

то 

где Ф, и фа — граничные значения координаты ¢, / — размер, нормаль- 
ный к плоскости Ф. 

Изложенный метод остается в CHIE, если B результате отображения 
граничные контуры плоского поля представятся на плоскости F(2) 
B виде двух концентрических окружностей. 
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* Или л = 9; л: = фу; Ny = ¢y, если граничные эквипотенциальные линии отобра- 
жены в виде прямых, параллельных оси ¢, 
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