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ОПЕРАТОРЫ ПРЕОБРАЗОВАНИЯ

(Представлено академиком С. Н. Бернштейном 20 VII 1950)

Сформулируем исходную теорему А предыдущей заметки (J), введя 
удобные для дальнейшего обозначения. Пусть L — заданный на полу­
оси [0, оо) дифференциальный оператор второго порядка вида

L [и] = ип (х) — q (х) и (х), (I)

где (х) — вещественная функция, суммируемая в каждом конечном 
интервале полуоси [0, ©о). Обозначим через (X, х) решения уравне­
ний

А [и] + Хи — 0, (1)

удовлетворяющие начальным данным:

0) = 1 (X, 0) = h, если h оо;
“л (^, 0) = 0, (X, 0) = 1, если h = оо,

где h и X — произвольные вещественные числа.
Теорема А. Для каждой пары операторов Lx и L2 вида (I) и 

вещественных чисел hx и h2, могущих обращаться в бесконечность 
только одновременно, существует оператор преобразования *

* Важные частные случаи операторов преобразования рассмй^жЙетлись в р-М 
в связи с теорией обобщенного сдвига. .рг Д'
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Vопределенный на всех суммируемых в каждом интер­
вале полуоси [0, оо) функциях f (х) равенством

И/) = /(*)  + ^K(x,t)f(t)dt, 
о такой, что

(X, х)] = (X, х),

где «^(Х, х) и ««(X, х)—решения уравнений (1) для операторов Lx 
и L2 соответственно. При этом ядро К(х, t) вещественно и равно­
мерно ограничено в каждом конечном квадрате 0-^x-^b, ОДІДЬ 
Ь<б<х>.

При решении вопросов, не связанных с равномерной метрикой на 
полуоси [0, оо), обычно оказывалось достаточным знать элементарные 
свойства операторов преобразования, непосредственно вытекающие из 
их вида. Попытки приложения операторов преобразованияк вопросам,



существенно связанным с равномерной метрикой на полуоси [0, оо) 
(например, к теории обобщенных почти периодических функций), 
наталкивались на специфические затруднения, полное преодоление 
которых не удавалось (3) даже в предположении, что функции q(x), 
отвечающие операторам L, удовлетворяют дополнительному ограни­
чению

(1 + х2) | q (х) | dx < оо.
о

(П)

В связи с этим в настоящей заметке мы подробно исследуем 
строение операторов преобразования, предполагая условие (II) выпол­
ненным, что позволяет в этом случае преодолеть отмеченные выше 
затруднения.

Обозначим через D оператор дифференцирования: D [и] = и' (х). 
Тогда D* есть простейший из операторов вида (I). Очевидно, любой 
оператор преобразования VfL можно представить в виде:

V{lM}= V{d4^}V{L1d^ если и

V{LM} = ^{D^} еСЛН = h2 = ^.

Поэтому поставленная в этой заметке задача сводится к выяснению 
строения операторов V^LOhy а им обратных. Мы будем
формулировать теоремы только для операторов V^D40h^ и V(LD,h0} 
(h^eo), хотя аналогичные результаты справедливы и для операторов

Строение оператора достаточно полно
вскрывается следующей теоремой

Теорема 1. Если оператор L удовлетворяет условию (II), то 
X х

1)
о о

где а = lim (0, х);
Х->СО

2) sup |7?(х, О I
0<.r<coj 

О

В частном случае, для оператора И|д,лоор эта теорема была ранее 
доказана А. Я- Повзнером (4). Значительно труднее поддается изуче­
нию обратный оператор Угктоу Наиболее интересен вопрос о пове­
дении этого оператора на равномерно ограниченных на полуоси [0, оо) 
функциях.

Если оператор L удовлетворяет условию (II), то спектр краевой 
задачи для этого оператора с краевым условием у' (0) — hy (0) состоит 
из непрерывной части, заполняющей положительную полуось 0<^Х<Ъо, 
и конечного числа собственных чисел Хх<Х2<- • -<Хп<0. При этом 
соответствующие собственные функции х) (& = 1, 2,..., п) убы-

—XУ| Ха I вают при х-^оо как е " ' * .
Построим вспомогательный оператор Рн, определенный на всех 

ограниченных на полуоси [0, оо) функциях / (х) равенством:

^f/1 = \ 2 dt’
о k
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где a* = |«ft(X*, %)|Мх На тех же функциях оператор И^д,^ можно 
О ■

записать в виде
VfiD’hO) — + ^2,

где Vi ^2 ^{іл’йо} № Рь), т. е.

К [/] = ^ 2 ТГ cos х У ^h^k, t) f(t) dt = 
о *=1 к

“ n
\ 2 ch x /| X*) wft (X*, t) f (t) dt,

К [/] = /(*) + (x, t) f (t) dt,
О

где H (x, t) — некоторое вещественное ядро. Структура оператора Уг 
ясна. Поэтому для выяснения строения оператора остается
исследовать ядро Н (х, t). Окончательный результат дает теорема 2.

Теорема 2. Если оператор L удовлетворяет условию (II), то
т п

= /(*) + t)f(t)dt +
0^1 k

CO

+ ^H(x, t)f (/) dt, 
0

co

2) sup \\H(x,t)\dt=H0<oo,
0<r<oo J ’ u ’

0

где Xx<X2<. • -<(X„-<0 — собственные числа краевой задачи для 
оператора L с краевым условием у' (0) — hy (0) = 0. Формула 1) 
справедлива для всех функций f (х), удовлетворяющих условию

" 1 \f (х) | dx < оо, в частности, для всех ограниченных на 
о
полуоси [0, оо) функций.

Основные приложения сформулированных теорем к теории обоб- 
Щеиных почти периодических функций будут рассмотрены отдельно.

Из других приложений этих теорем укажем на следующее обоб­
щение неравенства С. Н. Бернштейна.

Если оператор L удовлетворяет условию (II) и функция
N

f И = ^а^ніуі, х) (2)
і=1

ограничена на полуоси [0, оо), то

sup |A’»[/(x)]|<Ca’« sup |/(х)|, (3)
0<Сл<^со 0<^-V<^co

где a = ^тах^ | v/1, а константа С не , зависит ни от функции f (х), 
ни от числа т = 1, 2,...
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Подобным же образом может быть обобщено и неравенство Г. Бора.
В заключение отметим, что теоремы 1 и 2 позволяют также пол­

ностью вскрыть структуру коммутативных нормированных колец, свя­
занных с оператором L, которые ввел А. Я- Повзнер (4) и подробно 
исследовал 3. С. Агранович (®).
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