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МАТЕМАТИКА
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О ПРЕДЕЛАХ НЕОПРЕДЕЛЕННОСТИ ТРИГОНОМЕТРИЧЕСКИХ 
РЯДОВ

(Представлено академиком И. Г. Петровским 1 VII 1950)

Известно, что для любой измеримой функции f (х), конечной почти 
всюду на сегменте [ — те, те], можно определить тригонометрический

со

-у- + 2 (ап cos пх + bn sin пх), (1)

сходящийся к fix) почти всюду на [— те, те] (1). Возникает вопрос 
можно ли определить тригонометрический ряд по заданным пределам 
неопределенности, если они конечны почти всюду *.  На этот вопрос 
дает ответ следующая теорема.

* Пределами неопределенности бесконечного ряда мы будем называть верхний и 
нижний пределы его частных сумм.

** <р(х) может равняться + оо на множестве положительной меры. Во всех точках 
этого множества, в которых f(x) конечна, мы полагаем f (х) + <р (х) = + оо, f(x) —

Теорема 1. Пусть даны две функции F(x) и G(x), измеримые 
на сегменте [—те, те] и удовлетворяющие неравенству

G(x)^F(x) (2)

почти всюду на этом сегменте. Предположим, кроме того, что в 
каждой точке сегмента [— те, те], за исключением, быть может, 
множества меры нуль, или обе функции F (х) и G(x) конечны, или 
Р (х) = + оо, G (х) = — оо. В таком случае можно определить три­
гонометрический ряд (1) с коэффициентами, стремящимися к нулю 
при п->оо, для которого F(х) есть верхний предел и G(x) есть 
нижний предел почти всюду на [—те,те].

Теорема 1 может быть получена как следствие одной теоремы о 
пределах неопределенности рядов Фурье — Лебега. А. Н. Колмого­
ров построил пример ряда Фурье от суммируемой функции, который 
расходится всюду (2). Далее, Марцинкевич доказал, что существует 
ряд Фурье от суммируемой функции, который расходится почти 
всюду и пределы неопределенности которого почти всюду конечны (3). 
Результат Марцинкевича является частным случаем теоремы, кото­
рая формулируется следующим образом.

Теорема 2. Для любой измеримой функции ср(х), определенной 
почти всюду на сегменте [— те, те] и удовлетворяющей неравенству 
<р(%)>0 почти всюду на этом сегменте, можно определить сумми­
руемую функцию f (х), ряд Фурье которой имеет в качестве преде­
лов неопределенности f (%) + ср (х) и f(x) — ср(х) **.
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Вывод теоремы 1 из теоремы 2. Возьмем две измеримые 
функции л(х) и G(x), удовлетворяющие условию GfxX + fv) почти 
всюду на сегменте [-к, к], и предположим, что в каждой точке этого 
сегмента, за исключением быть может, множества меры нуль, или 
обе функции Л(х) и G(x) конечны, или +(х) = + <ю Q(x] = — оо 
Определим две функции <р(х) и ф(х) следующим образом:

(3)
если F(x) и G(x) конечны;

<р (х) = + СЮ, Ф (х) = О,
если F (х) = + оо, G (х) = — сю.

Тогда <р(х) и ф(х) измеримы на 
этом сегменте ф(х) конечна и ?(х)>0. ' '

На основании теоремы 2 мы можем определить 
емую функцию f(x), что

[— -, к], причем почти

(4)

всюду на

такую суммиру-

sup М*) ~ + Jim іпХ(х) =f(x) — <p(x) (5)

п2™ИщС^ДУ Ha°n есть сУмма n + 1 первых членов 
ряда Фурье от функции /(х). Обозначим, для краткости, этот послед­
ний ряд через 1 . шолсд

Так как ф (х) —/(х) есть измеримая функция, конечная почти 
всюду на [—tv тт], то, на основании теоремы, формулированной в на- 
чале заметки ( ), существует тригонометрический ряд Т", сходящийся

J (х) почти всюду на [— к, к]. Обозначим через т„(х) сумму 
п+1 первых членов ряда Т". Тогда 1 сумму

lim т„(х) = ф(х) — f (х) (6)

почти всюду на [— п, тс].
Предположим теперь, что тригонометрический 

в результате почленного сложения рядов Т' и Т’’. хшда 
через S„(x) сумму п + 1 первых членов ряда П) буде 
основании (5) и (6), к

i ряд (1) получается 
"■ Тогда, обозначая

:м иметь, на

sup Sn = sup °п W = ? W + Ф (x),

hm mfS„(x) = lim infa„(x)+ lim t„ (x) = - ? (x) + ф (x)

почти всюду на [-тс, тс] и, следовательно, на основании свойств 
функции F(x), G(x) и равенств (3), (4), свойств

lim sup Sn (х) = F (х), lim inf S„ (х) = G (х) 
n->m ' V ’

почти всюду на [-тг,тг], т. е. почти всюду, на этом сегменте F(x) и 
roLol™“oro Прмела” “«"Рмеленио™ три-

и^ЧТ°бж4т3аК0НЧИТЬ доказательство теоремы, нам остается показать 
что коэффициенты ряда (1) стремятся к нулю при л-»сю. Это немед­
ленно следует из того, что ряд (1) получается в результате почлІн- 
«X сложени„я Рядов Г и коэффициенты которых обладают упо­
мянутым свойством в силу известных теорем.

В заключение формулируем две леммы, на которые опирается до­
казательство теоремы 2. стирайся до
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Лемма А. Возьмем произвольное действительное число с 
произвольные натуральные числа р и v, у>8, и произвольные поло­
жительные числа а и В, удовлетворяющие условию 0 < В а / v.
Положим cs — с0 + as, as = cs — a' (s = 1, 2,.,., 2р). Тогда

dt

(ср + 2аІн^Х^ср+і — 2а/ч, п = 1, 2,...),

где L есть абсолютная постоянная.
Лемма Б. Пусть заданы: сегмент [а, Ь] с [— и, тс], положитель­

ные числа s, 8, а, положительное число р, соизмеримое с тс, и нату­
ральные числа р, q, причем q 2>32, р^1/*,  8 <р/128 тс.

* Функция называется ступенчатой на сегменте [а, 6], если она постоянна на 
каждом из интервалов (в конечном числе), которые получаются подразделением сег­
мента [а, &].

Тогда можно определить функцию х(аЬ натуральное число / 
и измеримые множества е, Elt Е2, которые обладают свойствами^

1) х(%) есть ступенчатая функция на сегменте [а,Ь]-,*
2) xW>0 (а<%<&); 

ь
3) X Ю dt = е;

а
4) mes е < 28 (Ь — а), ес [а, &];
5) каждое из множеств Ег и Е2 состоит из конечного числа 

открытых интервалов с концами, соизмеримыми с b — а, причем. 
mes Ег = mes Е2 = р (Ь — а) / 64тс, Ег с: (а, Ь), Е2 cz (а, Ь);

6) для любого х^Ег существует такое натуральное число п(х)„ 
что

[1 < п (х) < ф 
и 

ьС х w м > л _ ± + ! ,. cos ч,
а

где есть абсолютная положительная постоянная;
7) для любого х£Е2 существует такое натуральное число 

v(x), что
?•<» (х)<ф 

и 
ь

л, Sin V (х) (/— л) ,, , е Р . . \+ l°gycosp),
а

где L± имеет прежнее значение;
8)

(% € [— тс, тс] — е, п = 1, 2,..., ф), 

где L2 есть абсолютная положительная постоянная;
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9)
sin n (t — x) 

T^x

10)
(x € [— тс, тс] — [a — a, b 4- a], n = 1, 2,...);

b 

a

(x^ [—тс, 7t] — e, [/).

Лемма Б получается в результате применения леммы А и рассужде­
ний, аналогичных тем, которыми пользовался А. Н. Колмогоров при 
построении расходящегося всюду ряда Фурье — Лебега.

Поступило
29 VI 1950
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