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МАТЕМАТИКА

А. ПОВЗНЕР

О НЕКОТОРЫХ ПРИЛОЖЕНИЯХ ОДНОГО КЛАССА ГИЛЬБЕРТОВЫХ 
ПРОСТРАНСТВ ФУНКЦИЙ

(Представлено академиком А. Н. Колмогоровым 4 VII 1950)

Мы дадим в этой заметке приложение некоторых результатов ра­
боты ^). Обозначения заимствованы из (х).

Пусть у есть некоторая простая, кусочно-гладкая кривая, ограни­
чивающая односвязную область С. Совокупность регулярных внутри 
С функций f(z) с |/(z) |21 dz |< оо обозначим через Ну есть

Y
g-пространство, если скалярное произведение определить как (/, g) = 
= f(z) g (z) I dz |. Для круга, взяв за ортонормированную систему zn 

(п — 0, 1,2,...), получим из формулы (5) заметки (х):

gM= * . (О
1 —

Общая формула для g(z, Q имеет вид

1 — Ф (Z) ф (о

где ф(г) отображает конформно область С на единичный круг. Если 
внутри круга задать последовательность точек аь а2,..то детерми- 
нантный критерий (х) для того, чтобы эта последовательность была 
последовательностью единственности, даст, с помощью (1), известный 
критерий Бляшке. Подстановка (1) в формулы (7) —(9) заметки (х) 
даст формулы Уолша (4).

g-пространством является также пространство Hd функций /(z), ре­
гулярных внутри односвязной области D со скалярным произведением

= i \\f^~g(z)dxdy (z = x + iy\ 
D

Для круга g-функция этого пространства имеет вид
1

^ = 1^- <3>
Пространства Нг и Hd обладают A-свойством. Эти пространства 

рассматривались впервые Сеге (2) и Карлеманом (3). Обобщения этих 
про транств для многосвязных областей рассматривались в ряде работ 
С. Бергманом (6). Отметим, что рассматриваемая С. Бергманом функ­
ция ядра есть g-функция соответствующих пространств.
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Пусть т (р) — непрерывная для 0<^р<оо функция и такая, что ОО
т (0) = 0, е-т <₽) рга dp < оо (и = 0,1, 2,...). Построим пространство Нх>

о
состоящее из регулярных во всей плоскости функций f(z) со скаляр­
ным произведением

оо 2п

0 0

db.

Нетрудно показать, что 77т есть g-пространство, обладающее 
Д-свойством. Ортогональная последовательность 1, z, z2,... плотна 
в Нх. Ортонормировав эту последовательность, получим для g-функ­
ции Нх:

zk гк — р 03 ...к
= где Ck=\e~^p™dp, Ф(^) = 2^- (О

0 0.0

В частности, при т(о) = 2рр (р>0) получим (w) = 2р cos h (2р ў w). 
Пространство Нх в этом случае содержит все функции экспоненциаль­
ного типа меньше р и тип функции из не может превосходить р.

Формула (7) заметки (х) доказывает следующую теорему:
Теорема 1. Если последовательность alt а,,,... является после­

довательностью единственности пространства Нх, то f(z) с. Помо­
жет быть построена с помощью счетного процесса по ее значениям 
в точках ап. Процесс построения дается формулами (7) и (8) за­
метки (х).

Перейдем теперь к некоторым приложениям к задачам интерпо­
ляции. Мы остановимся только на процессе Ньютона, хотя аналогич­
ные соображения применимы и к другим интерполяционным процессам 
(например, процессу Лагранжа).

Поставим задачу: найти достаточные условия для того, чтобы ре­
гулярная в правой полуплоскости функция F (z) допускала разложе­
ние вида '

/(г) = р0 + ₽1(2~1) + ₽2(г-1)(г-2) + ... (Re(z)>0). (5)
Возьмем некоторый вектор а = (а1; ...), ca„>0 (п = 1, 2,...);

положим

Ka(z, V) = 1 + 2a*( z— l)---(z — k)(v— 1)... (V — k),

• (6)' \ 1,а 1-2 a(a + l) / ' 7 Г (z + а) Г (v + a) ' '

*=1

и пусть этот ряд сходится для всех пар (z, г») при Re (z) ^р*  
Ве(ц)>/>а. Ядро Ka{z,v) позитивно на множестве Re(z)>р^ Соста­
вим g-пространство НКа. Полагая 21г = КЛ(г, /) и их = 1, и, = /а8 (г— 1)... 
..[z — (s— 1)], получим, что и, есть линейная комбинация 21р ..., 2IS и, 
так как (as, 21г) = 0 (/>-s), то иь и2,... образует полную ортонормиро- 
ванную систему в НКл- Поэтому каждый элемент F (z) с Нка допу­
скает разложение (5) при Re(z)>pa. Выбирая различные векторы а, 
можно искать достаточные условия для того, чтобы данная F (z) была 
в НКа. Если />«<0 или если F(z) с Нк^ для множества векторов а. 
таких, что ра>0, но 0 является предельной точкой множества Ръ то 
F (z) допускает разложение (5) при Re(z)>0.

Применим в несколько измененном виде эти соображения, положив
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Ряд (6) сходится при Re (z + v + а) >0. Пусть — 1 < а < 0. Тогда 
^а(г, V) позитивно на множестве Re(z)> —а/2.

Из интегрального представления для Г-функции вытекает
Теорема 2. Пространство Нка состоит из всех функций F (z), 

представимых в виде
Р = ТТгЙо I dt, (7)

о

где f(t)— любая функция, удовлетворяющая условию

|2 dt<oo.
о

(8)

Норма F (z) и НКа определяется из

Ий2 = аГ (а) \f(t^dt.
о

(9)

Положим (z) = ^'"(г (k = 1,2,...,), w0 (z) = z и
ОО

Та(z, v) = Ka(z, v) — а. = wk (z) wk (v). Элементы wk (z) (k = 0, 1, 2,...) 
о

образуют ортонормированную систему в Нц-
Лемма 1. НКа с НТа и || h ||ra < || h ||^ для h с Ka-
Из леммы немедленно следует:
Теорема 3. Любая функция F (z) с Нкх допускает представ­

ление
ОО

^(4 = 2 ^^(4
*=0

2 К i2 < °°- 
^=0

Коэффициенты aft в теореме 3 равны:

«а аГ (а) е 1F 1 f (t)
о

Т(* + 1)!(а+1)...(а + А) ’

(Ю)

(И)

где Lnyi (t) есть полином Лагерра относительно веса e^t^. Функ­
ция f(t) взята из (7).

Теорема 4. F (z) с: Нка допускает представление

F(z) = ₽o4-₽1(z-l) + ₽2(z-l)(z-2)..., (5')

сходящееся при Re (z) 1.
Ряд (5') сходится для тех и только тех z, для которых

lim -------V-V=0 (а„из(10)).
л->0 Re (г) — — + — 

П 2

Норлундом (5) был введен класс 91 функций F (г), регулярных 
в правой полуплоскости и удовлетворяющих там условию

F {re1**) е^(8) (1 + г)0+г
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где lim г (г) = 0 и ф ($) = cos -9- In (2 cos Д) + & sin ft. Им было показано, 
г —> со

что функции из 91 допускают разложение (5') при Re(z)>0.
Теорема 5. Если F то F (?) — F (— a) G при любом а 

из открытого интервала (—1,0).
Теорема Норлунда получается как следствие из теорем 4, 5. Класс 

функций, удовлетворяющих условию теоремы 4, шире класса 91-
Укажем теперь на приложение g-пространств к теории квазианали- 

тических функций.
Рассмотрим класс Т функций f(x) (0<%<оо), имеющих произ- 

СО

водные любого порядка и таких, что \ \ (t) \2 dt A2k (k = 0,1,...),
о

где Ak — заданные константы. Константы определяют квазианалитиче- 
ский класс, если из f а Т, (0) = 0 (А = 0,1,...) следует /(х)=0. 
Легко видеть, что класс тогда и только тогда квазианалитичен, если 
гильбертово пространство Н функций /с?,/W(0) = 0 (^ = 0,1,...) 

“ip
с нормой ||/||2 = V —\ i/W (t) 12dt пусто. H есть g-пространство. 

So0J
Легко видеть, что его g-функция есть предел g-функций gn про­

странств Нп с нормой
п

о Ak oJ
/W(0) = 0 (А = 0, 1, 2,..., n — 1).

Для квазианалитичности класса необходимо и достаточно, чтобы

lim gn (х, х) = 0.
Л —>_со

Но
0

Еп^У)^^ Еп(х + №п(У + Ц dt,

где
со

Еп = 2^ R^sj ds’ = С1 “ ’ О ~ х) ’

1 z2 zzna b .,... — корни уравнения — 4—4- • • • 4—у = 0, лежащие в верх- Д5 4j Ап
ней полуплоскости.

Переход к пределу даст известный критерий квазианалитичности 
Карлемана.
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