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МАТЕМАТИКА —

М. Г. КРЕЙН

ОБ ОДНОМЕРНОЙ СИНГУЛЯРНОЙ КРАЕВОЙ ЗАДАЧЕ ЧЕТНОГО 
ПОРЯДКА В ИНТЕРВАЛЕ (0, оо)

(Представлено академиком А. Н. Колмогоровым 24 V" 1950)

В нашей недавней заметке (1), посвященной построению теории 
бесконечных J-матриц, мы указали, что эта теория представляет, 
в частности, интерес еще тем, что она может служить алгебраической 
моделью для соответствующих построений в теории краевых задач 
с одним сингулярным концом.

В настоящей заметке приводятся результаты этих построений, прове­
денных на основе наших общих исследований по спектральной теории 
операторов (2 4).

Формулируемые нами теоремы в полном их объеме, повидимому, 
не были известны даже для сингулярных краевых задач второго 
порядка (см. (5 7)).

Наша задача получила более ясную перспективу благодаря инте­
ресным исследованиям И. М. Глазмана (8,9).

1. Пусть р^х),..., рп (%) — определенные в интервале
0<Сл<С®о вещественные измеримые функции, удовлетворяющие при 
любом х>0 условиям

| р0 (х) |-1 dx < оо, | pk (%) | dx < оо, (А = 1, 2, ..., п — 1). 
о о

Через Q обозначим класс всех комплекснозначных функций 
у (х)€£2(0, оо), абсолютно непрерывных вместе со всеми своими 
производными до (ri— 1)-го порядка (включительно) и обладающих 
еще тем свойством, что для них абсолютно непрерывны последова­
тельно составляемые функции:
D["]j/ = Ро—> D[n+*]j/ = pk ^yk-~^-Dln+k~u у (k = 1,2, ...,n-l),

л dxn dxn~k dx xx /,

а функция
DWy = poy~^D^n~}}y= •

dx v 1 dx dx dx2 '' ‘ dx \Pn J ’' ’ ) J

принадлежит A2 = £2(0, °°)-
Функции j/(x)€Q отнесем два n-мерных вектор-функционала

Чо Су) = Су, У, • • •, Су) = (^’У ^[2П"2У ...,
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Пусть теперь Д = ||afft||"— произвольная эрмитова матрица. Обо­
значим через Пл совокупность всех финитных (т. е. обращающихся 
в тождественный нуль при достаточно больших х) функций из И, 
удовлетворяющих граничным условиям:

sin Д^0(х) + cos Ді^Су) = °. (1)

Если рассматривать оператор D[2n} как оператор, действующий 
только на Пл в Л2, то он окажется эрмитовым оператором. Замыка­
ние этого эрмитова оператора обозначим через ЬА, а его область 
определения — через Пл-

Эрмитов оператор Пл имеет конечный индекс дефекта (т, т), 
не зависящий от выбора матрицы Д.

Число т совпадает с числом линейно независимых решений из 
Л2 (точнее — из П) дифференциальной системы, состоящей из уравне­
ния

П[2л] ср — = 0 (2)
X — любое невещественное число) и граничных условий (1).

Если т = 0, то Пл совпадает с множеством Пл всехфункций/€П, 
удовлетворяющих (1); если же т>0, то Пл составляет правильную 
часть Пл, которую также нетрудно охарактеризовать (см. (9)); при 
этом всегда DAf = D^f (fE Пл).

Вопреки ошибочным утверждениям В. Виндау (10) и Д. Шина (и), 
И. М. Глазман (8) показал, что дефект т при том или ином выборе 
функций р0, р},..рп может принимать любое из значений 
0, 1, 2, ... , т.

Пусть Rx (ImX^O) — одна из резольвент оператора DA, т. е. ре­
зольвента одного из самосопряженных расширений DA оператора DA- 
R^(DA-\I)-\

Резольвенте R, отвечает непрерывное ядро R(x, s; X) (0-<х, 
s<Zoo, 1шХ=^0) такое, что для любого /€Л2 (см. (9)):

R,f(x) = R(x, s; l)f(s)ds.
о

Обозначим через <рДх; X) (j = 1, 2, ..., п) решения дифференци­
ального уравнения (2), выделяемые начальными условиями;

ЧоЫ = cosAes, (щ) = — sinAe,, (j = 1, 2, ... , n), 

где 2, ..., n) — орты n-мерного пространства:

= (1, 0, ..., 0), e2 = (0, 1, 0, ... , 0), ... , en = (0, 0, ... , 0, 1).

Обозначим через Ф(х; X) вектор (^(х; X), ..., <р„(х; X)), который 
мы будем мыслить как матрицу, состоящую из одной колонны. 
Через Ф*(х; X) обозначим матрицу, транспонированную и комплексно 
сопряженную с Ф(х; X), т. е. матрицу, состоящую из одной строчки 
(«рДх; X), ..., 9п(х; X)).

Пусть, кроме того, Vn обозначает класс всех эрмитовых матриц функ­
ции Г (X) = || tja. (Х)||” (Т(0)=0, Т (X — 0) = 7(Х);—оо<Х<оо), которым 
отвечает неубывающая форма

п 

j, *=1
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Метод направляющих функционалов (2,3) позволяет весьма просто 
доказать следующую теорему.

Теорема 1. Всякой резольвенте R,. оператора DA отвечает 
единственная матрица-функция T^^Vn (спектральная матрица) 
такая, что при любых невещественных z' £

со

R^x, s-, z) — R(x, s; Q = (2)
— ОО 

причем стоящий справа несобственный интеграл сходится абсо­
лютно равномерно в каждом конечном квадрате 0х, s^L 
{О < L < оо).

Если же при некотором а:

Т(Х) = 0 при \^а, (4)

то имеет место также разложение

R(x, s; z)
Ф* (s; Х)^Т(Х)Ф(х;Х)

А. — z (5)
а

Каждое из разложений (3) и (5) сходится абсолютно равно­
мерно во всяком конечном квадрате (0<Т <оо), и
это свойство этих разложений сохраняется при почленном их 
дифференцировании k раз по х и I раз по s (O^k, 1<^п—1).

2. Для финитных функций f(x) из Ь2 имеет смысл преобразо­
вание:

F(X) = ^/(S)O*(S; \)ds, 
О

F* (X) = f (з) Ф (s; X) ds.
G •

Вводя в рассмотрение гильбертово пространство Lr\ порождае­
мое матрицей Т'(Х) (см. о нем в (4), § 3), можно утверждать следую­
щее.

Теорема 2. Для того чтобы некоторая матрица-функция 
Т (X) € Vn была спектральной матрицей оператора DA, необходимо 
и достаточно, чтобы по отношению к ней преобразование f(x)->F(k) 
(финитных функций f(x) из L2 в вектор-функции F(K)) было изомет­
рическим, т. е.

СО со

F(\)dT(^F^=^\f(s)\*ds,
—оо О

(6)

и чтобы замыкание этого отображения давало унитарное отобра­
жение Uf всего L2 на все L^-

Если т = 0, то оператору DA отвечает единственная спек­
тральная матрица Т(>) и она вполне определяется одним свой­
ством (6).

Метод получения теоремы 4, как и ряда других теорем типа 
Парсеваля — Планшереля, указан автором в (2,3)- В случае т>0наши 
методы позволяют указать правило определения всех матриц 
T№Vn, обладающих свойством (6).
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3. Сочетание теорем 1 и 2 приводит к следующим результатам.. 
Теорема 3. Если f я W т0 для k = 0, п — 1

.ОО

Dwf(x) = F^dT^D^tx; X), (7).
—ОО

причем все эти разложения сходятся абсолютно равномерно в каж­
дом конечном интервале 0 х ^.L.

Если функции рг (х), ... , р,^ (х) непрерывны, а р0 (х) 0, то
утверждение сохраняет силу также и для k — п, nyi, ... , 2п—1.

Здесь Dlk} при А < п означает обычный оператор кратного диффе­
ренцирования dk / dxk.

Обозначим через (Ра} совокупность всех линейных граничных 
условий, вытекающих из условий (1) и связывающих только величи­
ны у (0), У (0), Ул-1)(0).

Теорема 4. При выполнении условия (4) абсолютно равно­
мерно сходящиеся в каждом конечном интервале разложения (7) с 
k = 0, 1, ... , п— 1 имеют место для всякой функции f(x) (0^х<ух>), 
обладающей следующими свойствами:

1) функция f(x) абсолютно непрерывна вместе со всеми своими 
производными f'(x), ..., (х);

2) функция f (%) удовлетворяет всем условиям (Ра\
ОО

V\\Pn-Ax)\\f^X)^ (Л = 0, 1, ... , П-1), 
о

Из-за недостатка места здесь опущены результаты, аналогичные 
тем, которые мы недавно получили для краевых задач второго по­
рядка (12).

Теоремы 1 и 4 суть обобщения соответствующих теорем, установ­
ленных нами для несингулярной краевой задачи (13).

Поступило
И V 1950
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