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МАТЕМАТИКА
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ОБ ОДНОМ ТОПОЛОГИЧЕСКОМ МЕТОДЕ В ЗАДАЧЕ
О СОБСТВЕННЫХ ФУНКЦИЯХ НЕЛИНЕЙНЫХ ОПЕРАТОРОВ

(Представлено академиком А. Н. Колмогоровым 23 VI 1950)

1. Пусть F—вполне непрерывный оператор, определенный на гра­
нице S ограниченного открытого множества, содержащего нуль О 
вещественного банахова пространства Е. Пусть Еп — подпространство, 
с достаточной точностью апроксимирующее компактное множество FS. 
Пусть Рп—непрерывный оператор „проектирования“наЕп (оператор Рп не 
обязательно линейный—см. (*)). Под топологической степенью 
(\ 2) вполне непрерывного векторного поля F—I без нулевых векто­
ров на S (через / обозначен оператор тождественного преобразования) 
понимают степень отображения a(PnF—/), где а — нормирующий 
множитель, множества S П Еп на (п—1)-мерную единичную сферу.

Без особых затруднений устанавливается, что топологическая сте­
пень вполне непрерывного векторного поля обладает почти всеми 
свойствами (см., например, (3)) степени конечномерных полей. Напри­
мер, на вполне непрерывные векторные поля на сфере переносится 
теорема Хопфа о классификации полей:

Для того чтобы два вполне непрерывных векторных поля без 
нулевых векторов на сфере S банахова пространства Е были, гомо­
топны, необходимо и достаточно, чтобы их топологические степени 
были одинаковы.

Для случая гильбертова пространства это утверждение было уста­
новлено Роте (4).

2. Из того факта, что топологические степени гомотопных полей 
одинаковы, следует

Теорема 1. Пусть на S заданы два вполне непрерывных век­
торных поля F1 — I и F2 — I разной топологической степени.

Тогда уравнение
9 = нЛ? + (1 — (л) F& (1)

имеет на S по крайней мере одно решение при некотором значе­
нии р, 0<^ 1.

Можно показать, что теоремы о собственных функциях нелиней­
ных операторов на сферах, установленные в (5, ®), соответствуют про­
стейшему случаю нашей теоремы, в них Д2 = 0 (степень поля — I 
равна единице), а топологическая степень поля Fr— I равна нулю.

3. Пусть А — вполне непрерывный нелинейный оператор, опреде­
ленный в некоторой окрестности нуля 9 пространства Е. Пусть А9 = 9.

Элемент <p0€f, 9о=^0, называется собственным вектором опе­
ратора А, если найдется такое число Хо, что

Фо = Х0А90.

Будем говорить, что оператор А имеет ветвь собственных век­
торов, втекающую в 9 с собственным числом р, если 

5



множество собственных векторов оператора А, которым соответствуют 
собственные числа, близкие к р. (из некоторого интервала, содержа­
щего р), обладает тем свойством, что пересечение его с границей 
каждого открытого множества (достаточно малого диаметра и содер­
жащего б) непусто и если собственные числа стремятся к р, когда 
нормы соответствующих собственных векторов из рассматриваемой 
ветви стремятся к нулю.

Применяя теорему 1, можно установить, полагая Т1=Нк— г) А и 
Л2 = (Х4 + е) А, следующее утверждение.

Теорема 2. Пусть оператор А имеет в точке б дифференциал 
Фреше В.

Тогда каждому собственному числу \к нечетной кратности 
линейного оператора В соответствует ветвь собственных векто­
ров оператора А, втекающая в д с собственным значением \к.

Эта теорема является обоснованием обычно применяемой линеари­
зации при определении вещественных точек ветвления малых реше­
ний в случае, когда собственные числа линеаризованного уравнения 
имеют нечетную кратность.

Применим теорему 2 к изучению интегральных уравнений.
Будем предполагать, что приводимые ниже интегральные операторы 

вполне непрерывны в простренстве С вещественных функций, непре­
рывных на замкнутом ограниченном множестве G конечномерного 
евклидова пространства.

Оператор А типа Лихтенштейна

Уь Уп)(Р(У1)---(р(У„)^Уг--^Уп (2)

имеет дифференциал Фреше

В<? (х) А; (х, у) <р (у) dy.
G

Оператор А типа ГаммерштеДна
(х) = ^К(х, y)f [у, <р (у)] dy (3)

о

в предположении существования fu (х, и) имеет дифференциал Фреше

В ср (х) = Кг (х, у) ср (у) dy,
G

где
^(х, у) = /С(х, у)^/(у, 0).

Оператор А вида
а ср (х) = J К [х, у, ср (у)] dy,

а

(4)

где функция К(х, у, и) непрерывна по всем переменным вместе с 
А\(х, у} = Ки(х, у, 0), имеет дифференциал Фреше

В <р (х) = \ (х, у) ср (у) dy.
G

Каждому собственному числу \к нечетной кратности ядра 
Кг(х, у) соответствует ветвь собственных функций интегрального 
нелинейного оператора А (типа (2), (3) или (4)), втекающая в 
б с собственным значением \к.
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Примерами ядер, имеющих собственные числа нечетной кратности 
могут служить знакопостоянные ядра (см., например, (7)).

В некоторых случаях можно утверждать, что существует беско­
нечное количество ветвей собственных функций оператора А. Напри­
мер, это будет тогда, когда у)— осцилляционное ядро или
функция Грина уравнения Штурма — Лиувилля.

4. Рассмотрим один частный случай, когда можно сделать допол­
нительные заключения о структуре множества собственных функций 
нелинейного оператора.

Пусть ц0 (л) — решение уравнения

9 (х) = X (х, y)f [у, <р (у)] dy, (5)
а

соответствующее значению параметра X = Хо, причем пусть у линей­
ного уравнения

?(%) = х^к(х,у)^/[у, My)l?(yW (6)
G

Хо не является собственным числом.
Следуя Н. Н. Назарову, будем говорить, что решение т»0(х) можно 

продолжить, если существует хотя бы одно такое непрерывное 
семейство ц(Х; х) решений уравнения (5), что ^(Хо; х)=^0(х).

Существование продолжений решения (х) в предположении 
аналитичности /(х, и) по и было установлено Гаммерштейном (8) (при 
дополнительном предположении положительной определенности ядра 
^(x, у)) и Н. Н. Назаровым (9). Следует отметить, что, несмотря на 
большую общность результатов, рассуждения Н. Н. Назарова проще. 
М. М. Вайнберг, вернувшись к предположению Гаммерштейна о не­
прерывности, симметричности и положительной определенности ядра 
К(х, у), обнаружил (10), что решение v0(x) продолжаемо при существо­
вании непрерывной производной -^/(х, и). Доказательство М. М. Вайн­
берга существенно основано на положительной определенности ядра 
К^х, у) и носит громоздкий характер.

Топологические соображения (например, использование принципа 
неподвижной точки из нашей заметки (и)) позволяют значительно 
проще установить существование единственного продолжения при 
более общих предположениях:

1) ядро К(х, у) имеет допустимые (в смысле теории линейных 
уравнений) разрывы;

2) существует непрерывная производная /(х, и) (x€G, и — из 
некоторого интервала, содержащего значения функции ц0 (х));

3) Хо не является собственным числом уравнения (6).
При этом v (X, х)->'У0(х) равномерно по хО G при Х-»Х0. Н. Н. Бо­

голюбов заметил, что продолжаемость решения ц0 (х) может быть 
установлена и при помощи принципа сжатых отображений.
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