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МАТЕМАТИКА

М. Г. КРЕЙН

О КРАЕВОЙ ЗАДАЧЕ ШТУРМА — ЛИУВИЛЛЯ В ИНТЕРВАЛЕ 
(О, оо) И ОБ ОДНОМ КЛАССЕ ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

(Представлено академиком А. Н. Колмогоровым 27 VI 1950)

Хорошо известно, что между теорией бесконечных якобиевых 
матриц (степенной проблемой моментов) и краевой задачей Штурма— 
Лиувилля в интервале (0, о©) имеется очень много аналогий. 
Эти аналогии, на наш взгляд, далеко не исчерпаны.

В этой заметке будет рассмотрено нагруженное интегральное 
уравнение, которое при одном выборе функции распределения ст(х) 
(0^х<^оо) может соответствовать краевой задаче, определяемой 
оператором Штурма — Лиувилля с индексом дефекта (1, 1), а при 
другом (когда а{х) есть чистая функция скачков со скачками в це­
лых точках 0, 1, 2, • • •) — „краевой задаче", определяемой бесконеч­
ной якобиевой матрицей с индексом дефекта (1, 1).

Мы покажем, что теоретико-функциональные методы (х), развитые 
нами при изучении абстрактных эрмитовых операторов (2), оказыва­
ются полезными при изучении одномерных краевых задач классиче­
ского типа и связанных с ними интегральных уравнений.

1. Пусть ст (х) = ст (х — 0) (0<х<ОО, ст (оо)< оо) — некоторая 
неубывающая функция, a — пространство всех ст-измеримых функ­
ций/(х) (0<х<оо), для «которых интеграл от |/(х) |2 t/ст(х) по все­
му интервалу (0, оо) имеет конечное значение.

Мы исследуем интегральное уравнение

ОО
Ф (х) = X К (х, s) ф (s) do (s) 

о
(1)

в котором ядро К^х, s) имеет специальную структуру

К(Х (-«<4
1Ф (s) X (*) (x>s),

(2)

где ф (x) и х (^) — Две какие-либо вещественные функции из 
Положим

V (х, s) = ф (s) х (х) — ф (х) х («) (0 < х, s < оо)

и введем в рассмотрение функции ф (х; X) и х (М X), определяемые 
из уравнений Вольтерра 
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ф (х; X) = ф (х) + X Г (%, s) ф («; X) da (s),
О

х (л: х) = х W + х у (*> *) х («; x) (s)-
О

Легко показать, что при любом комплексном X функции ф(х; X) и 

у (%; X) принадлежат 1.
С помощью ЭТИХ функций образуем целые функции от X.

£>0(Х) = 1 — Х^ф(«; Х)х(s)^(4 
О

(X) = X X (5; X) X (s)d° (SX
О

оо

Dx (X) = — X ф (s; X) ф (s)dc(s),
О

Ех (X) =1 + Х^ X (« X) ф (5) da (S).

О

Легко показать (см. (3)), что функция D0W является детерминан­
том Фредгольма уравнения (1).

Теорема 1. При любом вещественном а функция

.   cos а Ео (X) + sin а Ei (X) 
(X) — cos а Do (X) + sin а Di (X)

отображает верхнюю полуплоскость 1шХ>0 на свою часть. 
Кроме того, имеет место следующее тождество:

Ег (X) Do W-Eo (X) D± (X) = l. (3)

В силу теоремы Н. Г. Чеботарева (см. (4), главы IV, V) о меро- 
моцфныхУфункциях, отображающих верхнюю полуплоскость на свою 
часть, можно утверждать, что все нули числи те яяизнаме- 
нателя функции fa(X) веществен вы, просты и переме

Ж&Кроме того, функция Fa(X) допускает абсолютно 
д я щ е е с я разложение *

Fa (X) = С« + т«Х + 2 (Нхj J3, J

с х о-

(4)

чёр5  ̂ ФУ»»™« /И. удовлетворяю-

щих двум условиям:

И-*°° 1 Z ' Ло

Теорема 2. Каждая из функций D^K), D^, Ео^\ Е^К) при­
надлежит классу (V).

= (modz), то одно из равно нулю и тогда, разумеется, в сумме 
І4І следует опТстить соответствующий член При весьма общих предположе­
ниях относительно функций ф и у можно показать, что та - 0. Это, напри мер,вс _ 
имеет место, если уравнение (1) соответствует некоторой краевой задаче Штур 
Лиувилля (см. п. 4).
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Приведем доказательство этой теоремы.
В разложении (4) положим а = тс/2, а затем а = 0 и из получен­

ного таким образом первого равенства вычтем второе.
Учитывая (3), найдем, что функция Do1 (X) DTl (X) разлагается в сум­

му элементарных дробей с поправочными членами по Коши. На осно­
вании теоремы автора (см. (х), теорему 4) можно будет утверждать, 
что целая функция Do (X) D± (X) принадлежит классу (N), а отсюда уже 
нетрудно получить, что и каждая из функций Do (X), D± (X) в отдель­
ности принадлежит классу (N). Рассмотрение функции Еа 1 (X) приво­
дит к тому же выводу и для функций Ео (X) и Ех (X).

3. Можно также показать, что имеет место сходящееся разло­
жение

—1— = с0 4- сЛ + X2 У —, (5)

где Xj = Х;о суть нули детерминанта Фредгольма.
Теорема 3. Если, для интегрального уравнения (1) выполняется

условие:

(6)

то детерминант Z)0(X2) принадлежит классу (N) и, следовательно, 
{см. РУ) существует конечный предел

пг
lim -ў- =1-

Для получения этой теоремы следует на основании (5) разложить 
Dy1 (z2) в сумму элементарных дробей и затем воспользоваться тео­
ремой 5 нашей статьи (х). Кстати, заметим, что приведенное в (х) до­
казательство теоремы 5 ошибочно, но основная идея доказательства 
правильна, и оно легко исправимо *.

* Воспользуемся также случаем и заметим, что для того, чтобы доказательство 
теоремы 2 в р) сохранило правильность во всех частях, необходимо его вести не в 
отношении f р), о которой идет речь в теореме 1, а в отношении функции f(iy-z). 
Доказав теорему 1 для функции f (I + z), мы тем самым докажем ее и для функ­
ции f(z).

4. Рассмотрим уравнение

ф" + ? W? + Хр (%) <р = О, (7)

где р(х)>0 и q (х) (0 < х < оо) — вещественные функции, измеримые 
и интегрируемые в каждом конечном интервале (0, а).

Обозначим через а (%) первообразную функцию для р (%) (О х < оо).
Если при некотором невещественном X уравнение имеет два ли­

нейно независимых решения из то, по теореме Г. Вейля (5-7), 
это же будет иметь место для любого комплексного X. Этот случай 
для уравнения (7) называется „случаем вырождения".

Чтобы получить самосопряженную краевую задачу для уравне­
ния (7) в случае вырождения, необходимо задаться некоторым гра­
ничным условием в точке 0:

cos а<р (0) + sin а ср' (0) = 0 (8)
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и некоторым 
сать так:

„граничным условием" в точке оо, которое можно запи-

ИЛ [х (х)у (х) - / (х)у (х)] = 0; (9)

здесь х W —какое-либо решение уравнения (7) при Z = 0 неудов­
летворяющее условию (8). ’

Получающаяся при этом краевая проблема оказывается эквива­
лентной интегральному уравнению (1), в котором da = adx, а ядро 
Л (х, s) определяется по формуле (2), где- функция х W та же, что 
и js граничном условии (9), а ф(х) есть решение уравнения (7) при

В Удовлетворяющее условию (8) и нормированное так, что 
Х(х) Ф (х)-/(х)ф(х) = 1 (см. (Ё’7)).

I е о р е м а 4. Если, для уравнения (7) имеет место случай, вы- 
JIE & rlLL УС

р (х) dx = оо, 
о

(Ю)

то всякая самосопряженная краевая задача, отвечающая уравне­
нию (7), имеет бесконечное число отрицательных характеристи­
ческих чисел ..., причем

(Н)

В самом деле, если бы вместо (11) имело место (6), то, по теоре­
ме 3, можно было бы утверждать, что «2/Х^/<оо при п-> + оо а 
это, как нетрудно показать, противоречит (10).

Достаточно большом С>0, начиная с некоторого места 
<7 (х) у Ср (х), то всякая краевая задача, отвечающая уравнению (7), 
может иметь только конечное число отрицательных характеристи­
ческих чисел. Поэтому в' этом случае при выполнении условия (10) 
уравнение (7) не вырождается. Этот признак невырождаемости урав- 
иеиия А (ПРИ б°лее частных предположениях относительно функции 
р (х)) был установлен Г. Вейлем (5 7).

Поступило
12 VI 1950
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