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МАТЕМАТИКА

М. А. КРАСНОСЕЛЬСКИЙ

СХОДИМОСТЬ МЕТОДА ГАЛЕРКИНА ДЛЯ НЕЛИНЕЙНЫХ 
УРАВНЕНИЙ

(Представлено академиком А. Н. Колмогоровым 23 VI 1S50)

В настоящей заметке мы приводим результаты исследования при­
менимости метода Б. Г. Галеркина, представляющего собой развитие 
метода Релея —Ритца, к построению приближенных решений нели­
нейных операторных уравнений.

Многочисленные результаты, относящиеся к методу Релея — Ритца — 
Галеркина, были получены в основном Н. М. Крыловым для различных 
типов уравнений (подробную библиографию см. в (х)). Первые общие 
результаты о сходимости метода Галеркина для дифференциальных 
уравнений были получены М. В. Келдышем (2), работа которого основана 
на исследовании бесконечных определителей. В дальнейших работах 
Л. В. Канторовича (3), С. Г. Михлина (4) и Н. И. Польского применялись 
методы функционального анализа. В этих последних работах, как 
правило, исследование сводилось к изучению линейных вполне непре­
рывных операторов.

Общее исследование сходимости метода Галеркина для нелинейных 
уравнений, поскольку нам известно, не производилось.

Основную роль в нашем исследовании играет понятие топологи­
ческой степени вполне непрерывного векторного поля.

1°. Пусть
Lr с L2 с • • •

такая последовательность конечномерных подпространств возрастающей
размерности банахова пространства Е, что U Ln плотна в Е.

п=1
Пусть

Ри Р„...
последовательность линейных проекционных операторов (не обязательно 
ортогонального проектирования) с равномерно ограниченными нормами. 
Пусть при этом

РпЕ = Ln (п = 1,2,...).

Пусть А — вполне непрерывный оператор (вообще говоря, нели­
нейный), действующий в пространстве Е. Мы будем рассматривать 
уравнение

9 = А% (1)
причем будем предполагать, что это уравнение имеет изолированное 
решение <р0 ненулевого индекса (топологическая степень вполне
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непрерывного векторного поля А — І на сферах малого радиуса 
с центром в сро отлична от нуля). Если ?0 — не единственное решение 
уравнения (1), то все исследование проводится для элементов из 
некоторого шара Т с Е, в котором, кроме <р0> уравнение (1) не имеет 
решений.

Уравнения
? = РпАу (п — 2,...) (2)

будем называть приближенными уравнениями, а их решения 
^ — приближенными решениями уравнения (1).

Теорема 1. Приближенные решения, начиная с некоторого п, 
существуют.

При п-^оо приближенные решения уп по норме Е сходятся 
к решению % уравнения (1).

При оценке быстроты сходимости приближенных решений уп 
естественно сравнить эту быстроту с быстротой сходимости прибли­
женных решений уравнения ? = ?0, где ?о ~ решение уравнения (1). 
Иначе говоря, сходимость приближенных решений естественно сравни­
вать со сходимостью „ряда Фурье":

Ру9о + (Л — Л) Фо + (Рз — ?о + ‘ ’

Теорема 2. Пусть оператор А имеет в точке ср0, являющейся 
решением уравнения (1), дифференциал Фреше В (главную линейную 
часть), для которого 1 не является собственным числом.

Тогда быстрота сходимости приближенных решений к <р0 
характеризуется неравенством

II Чп. — ?о II (1 + s«) II Р'Ро — Фо II >

где е ->0 при п^оо.
Отметим еще, что если оператор А непрерывно дифференцируем 

в некоторой окрестности точки % (дифференциал Фреше есть равно­
мерно непрерывная функция точки, в которой дифференциал берется), 
то, начиная с некоторого п, приближенные уравнения (2) имеют 
в Т единственные решения.

2°. Пусть банахово пространство Е обладает базисом {£,•}. Іогда 
каждый элемент ^^Е однозначно представим сходящимся рядом

СО

І=1

Через Ln будем обозначать линейную оболочку первых п элементов 
базиса. Через Рп будем обозначать операторы, определенные формулой

п

i=Q

Легко видеть, что нормы операторов Рп равномерно ограничены.
При таком определении операторов Рп решения <рп приближенных 

уравнений будут галеркинскими приближениями.
Таким образом, теоремы 1 и 2 характеризуют сходимость метода 

Галеркина при приближенном решении нелинейных уравнений.
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3°. Пусть в Е заданы два базиса {gj и {/J. Каждый элемент 
представим тогда сходящимися рядами

9 = 2 Si’

9
i=i

Г. И. Петров предложил (5) обобщение метода Галеркина, заклю­
чающееся в построении приближенных уравнений

Q„9 — QH9 = О (п = 1, 2,...), (3)

где Qn — операторы, определенные формулой

q»9 = 2 F* f*
1=1

причем решения уравнений (3) отыскиваются в Аге-линейной оболочке 
первых и элементов базиса {gj.

Обоснование сходимости метода Петрова — Галеркина для одного 
частного случая было дано самим Г. И. Петровым. В общем случае 
обоснование сходимости для линейных уравнений было дано Н. И. Поль­
ским в предположении, что выполнено условие:

А. Существует такое число С, что для всех п, начи­
ная с некоторого,

II 9 II < с II Q? II (9€1„)«

Если условие А не выполнено, то можно указать такой элемент <р0, 
что приближенные решения Петрова — Галеркина уравнения <р = ф0 не 
будут сходиться.

Условие А позволяет привести уравнения (3) к виду (2).
Таким образом, в предположении выполнения условия А, теоремы 1 

и 2 характеризуют сходимость метода Петрова — Галеркина при 
приближенном решении нелинейных уравнений.

4°. Практическое решение получающихся при решении по Галеркину 
нелинейных уравнений систем алгебраических или даже трансцен­
дентных уравнений, конечно, весьма сложно. Следует, однако, указать 
случай, когда применение метода Галеркина может сократить вычисле­
ния при приближенном решении нелинейных уравнений. Это будет 
тогда, когда приближенные уравнения можно решать методом после­
довательных приближений.

5°. Все предыдущие рассуждения о сходимости метода Галеркина 
относились как к вещественному, так и к комплексному банаховым 
пространствам.

При исследовании топологическими методами вопроса о быстроте 
сходимости метода Галеркина при определении собственных чисел 
и собственных векторов линейных операторов существенно предполо­
жение о вещественности банахова пространства.

Пусть Е — вещественное гильбертово пространство. Пусть Ln 
и рп (п = 1; 2,...) — подпространства и проекционные операторы, 
введенные в пункте 1°.

Пусть А — линейный вполне непрерывный оператор. Пусть Хо — про­
стое (которому отвечает одномерное инвариантное подпространство)

1123



собственное число оператора А. Через ф0 обозначим соответствующий 
собственный вектор:

Фо = ^о-^Фо-

Без ограничения общности можно считать, что Х0>0. Пусть

II Фо II = К-
Нелинейное уравнение

Ф = II Ф II Ар

имеет изолированное решение ф0. Дифференциал Фреше В оператора 
|| <р || Лер определите равенством

Дф = Фо + Х0Л<р, 
Ло

так что 1 не является собственным числом оператора В.
Решения <р„ приближенных уравнений

ф = Рп И Ф II ^Ф

будут собственными функциями приближенных операторов РпА, кото­
рым отвечают приближенные собственные числа' нп — || <рд II .

Тогда из теоремы 2 следует:
Теорема 3. Простое собственное число Хо и соответствующая, 

собственная функция <р0 могут быть вычислены приближенно при 
помощи метода Галеркина, причем быстрота сходимости прибли­
женных собственных чисел\п и приближенных собственных функций 
<р,г характеризуется неравенствами

I К —Л> I < (1 + М II Р^о — Фо II,

II Ф« — Фо II (1 + Sn) II Д«Фо Фо II >

где ел-*0 при п-^са.
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