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МАТЕМАТИКА
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ИДЕМПОТЕНТНЫЕ ОПЕРАТОРЫ И ИХ СПРЯМЛЕНИЕ 

(Представлено академиком В. И. Смирновым 6 VI 1950)

В этой статье рассматриваются ограниченные идемпотентные опе­
раторы в гильбертовом пространстве произвольной размерности. 
Основной результат (теорема 7) состоит в установлении условий, при 
которых идемпотентное разложение единицы спрямляемо, т. е. подобно 
проекторному разложению единицы.

§ 1. Идемпотентный оператор. Ограниченный линейный 
оператор J называется идемпотентным, если J2 = J. Сопряженный опе­
ратор J’ будет идемпотентным вместе с J. Определим их неподвиж­
ные подпространства § = {х, Jx = х}, соответственно ® — {х, Гх, = х]. 
Связь / с § и ® укажем так: J=^X@. Так как (Д)* = J, то 
Д = ® X „

Замечание 1. Из J2 = J следует, что £ есть J— образ всего
£ = J&; аналогично & = J’S-

Векторы, преобразуемые оператором в нуль, составляют подпро­
странство, называемое нулевым. Легко доказывается теорема 1-

Теорема 1. Нулевые подпространства операторов J uJ* равны 
ортогональным дополнениям соответственно а яв­
ляются неподвижными подпространствами для дополнительных 
операторов I— J, соответственно I — J* (I — единичный оператор), 
т. е. 1 —

В силу этой теоремы для определения идемпотентного оператора 
J = достаточно знать, как он действует на векторы из ®. Ответ 
дает теорема 2.

Теорема 2. Идемпотентный оператор J = &Х& взаимно-одно­
значно и взаимно-непрерывно отображает ® на причем обратное 
отображение есть проектирование Q на ®. Таким образом, если 
h£&,g£®, то GJg = g, JGh = h, где G есть проектор на ® (т. е. идем­
потентный оператор ®х®). Аналогично'- HJ*h = h, J*Hg = g, где 
И — fax & есть проектор на &

Доказательство. Имеем JUg—g) — 0 и, по теореме 1, 
откуда g = GJg. Далее, h — GhM® и, по той же теореме, 

J (h — Gh) = 0, откуда h = JGh.
В этой теореме содержится необходимость следующего условия:
Теорема 3. Цлятого чтобыдва подпространства &и№ определяли 

идемпотентный оператор ®х@, необходимо и достаточно, чтобы 
проектированием одного из них {например, §) на другое (®) одно­
кратно покрывалось все последнее.

Достаточность условия следует из теоремы Банаха ((\ стр. 34) об 
обращении оператора.

Из теоремы 1 следует J (I—• О) = 0, J = JG', отсюда для произволь­
ного х€^ получим || Jx ||: II X || = II Jg II : II х ||, где g — Gx£&. По­
этому, если х€@, то || Jx || : II х || < II Jg ||: || g II • Так как по теореме 2 
g = GJg есть проекция Jg на ®, то || Jg || : || g || 1.

Итак, получена теорема 4:
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Теорема 4. Норма | J | = sup{|| Jx || : || х ||} идемпотентного опе-

ратора J=&x®^0 всегда >1 и равна sup {|| Jg || : || g ||}. Если, в 
g£®

частности, (4 конечномерно, то норма достигается на некотором 
направлении в &, т. е. | J | = II Jgoll> где g0^&, || g01| = 1 *.

* Для £2(6, 1] вторая часть теоремы получена (в терминах биортогональных 
систем) В. Я- Козловым (2). Его результат (лемма 1) можно усилить, добавив к словам 
«можно найти в виде» слова «и только в этом виде», так как на векторах х £ ® 
отношение Ц Jx || : || х |] не может достичь максимума.

Легко доказываются условия проекционности идемпотентного опе­
ратора:

Теорема 5. Для того чтобы идемпотентный оператор J = 
был проектором (т. е. & = ®), необходимо и достаточно каждое 
из следующих условий'- 1) J—J"', 2) | J | — 1; 3)77 = J*J.

§2. Идемпотентное разложение единицы. Последова­
тельность идемпотентных операторов Jn = ^пХ®п (п = 1, 2, . ..) назовем 
идемпотентным разложением единицы, если: 1) Jn попарно „ортого- 
нальны“ в смысле JnJm = 0 при п±т} и 2) для любого х € имеем 
в сильном смысле Игл (Дх 4- Дх 4- ... 4- JпХ) = х. При Jn = 0 для п 7> N

П~^СО

получаем конечное идемпотентное разложение единицы, для которого 
условие 2) принимает вид: Д 4- J2 4- ... 4- Jy = I. В этом случае после­
дующие рассуждения несколько упростились бы; мы не будем его 
рассматривать отдельно. При условии 1) оператор Jn — Д 4- Д Ч~ • • • "Т Д 
является идемпотентным и условие 2) равносильно следующим двум: 
2а) нормы |7„| равномерно ограничены; 26) совокупность подпро­
странств {^п} замкнута в том смысле, что их сумма (т. е. наименьшее 
содержащее их подпространство) равна всему Так как замкнутость 
равносильна полноте в смысле несуществования х=#0, х пер­
пендикулярно всем ^п, то тогда и {(Sn}“ замкнута- если х перпенди­
кулярно всем то Jnx = 0 (п = 1, 2, . . .), х = 0. Так как, кроме того, 
7Х =0 при п=/=т, Tn = Ji +J2 + --- + Jn и |7‘| = |7„|, то доказана 
теорема 6:

Теорема 6. Сопряженная последовательность {J„}? образует 
идемпотентное разложение единицы одновременно с {Jn}i •

Если S есть ограниченный линейный, оператор с ограниченным об­
ратным S-1, то семейство операторов Jn = SJnS 1 (п = 1, 2, . . •) будет 
также идемпотентным разложением единицы, которое назовем подоб­
ным {Jn}?- Идемпотентное разложение единицы, подобно проектор- 
ному разложению единицы, назовем спрямляемым.

Теорема 7. Для спрямляемости идемпотентного разложения 
единицы {Jn}? необходимо и достаточно существование положи­
тельной постоянной С такой, что для всех х(:Д будем иметь: 

со

^1И12<2Н-М2<С1И12-

Необходимость. Если Jn = SPnS~\ где Рп проекторы, то 
СО ОО 00

с = 2II Jnx\\>= 2 li SPn х II2 < I s 12 2 s^x ||2= I S|2 C|| x||2,
1 . 1 1

где С = I S|21 S-112; аналогично: a>C1||x||2. OO CO
Достаточность. Сумма ряда 2р^іі2 = ЖJn х, х) опреде- 

1 1
ляет квадратичную форму А (х, х) = (Ах, х) положительного само­
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сопряженного оператора А, причем из условия теоремы следует огра­
ниченность его и ему обратного А~1.

Из положительности оператора А — (J* Д + ... + следует 
сильная сходимость: j\jxx + ■•■ + fmJmX=* Ах при m -> ос; 
применяя здесь J*n получим fnJn х= J„Ax, т. е. fn А = J*nJn есть 
самосопряженный оператор и поэтому J*nA — AJn; умножая это 
равенство слева и справа на положительный квадратный корень 
Т = УАД найдем TJ"nS = SJn Т, где S = АТ = ТА = У А = Т~\ т. е. 
Рп = SJn Т= yjnTy есть самосопряженный идемпотентный оператор 
(проектор). Теорема доказана. Можно показать, что Д-1 имеет квадра- 

тичную форму (А^х, х) = 2II ад 2 = 2 (Нпх, х\ где Нп суть про- 
~ 1 1 екторы на

Замечание 2. В условиях теоремы 7 допустимые С не ограни­
чены сверху, но >1. Для того чтобы данное разложение едини­
цы {Jny было само проекторным (т. е. все = @„), необходимо и 
достаточно, чтобы наименьшее С равнялось 1. Необходимость очевидна, 
достаточность следует из того, что тогда || Jn х ||2 || х ||2, | I = 1 и 
все Jn становятся проекторами.

§ Б и ортогональные системы. Пусть сепарабельно 
и {A„}i его базис. Тогда существует единственная полная сопряжен­
ная система {^«}Г с (A„, gm) = 8nm. Эти векторы определяют одномер- 
иые^подпространства ^п, соответственно Из биортогональности 
W1 и {£Л}Г следует существование идемпотентных операторов 
Л = ««Х®„, ортогональных попарно: Jn Jm = 0 (п =Д т). Так как в 

разложении любого х = 2 cnhn по базису {hny слагаемое cnhn как раз 

равно Jnx, то {Л}Г образуют идемпотентное разложение единицы.
Таким образом и на основании теоремы 6 получается теорема 8:
Теорема 8. Для, всякого базиса {h.ny в сепарабельном гильбер­

товом пространстве сопряженная система {g-ДГ будет также ба­
зисом. Соответствующие одномерные подпространства ^п, ®„ опре­
деляют идемпотентное разложение единицы Jn = (я= 1,2,...).

Очевидно^ утверждение противоположного характера: если ’две 
системы {hny и указанным способом приводят к идемпотентному 
разложению единицы {Л = £пХ®„}щ то {hny и {gny суть базисы 
„по существу“ сопряженные, так как (hn, gm) = 0 при п^=т, но 
Уп, gn) остается, конечно, произвольным.

Теперь теорема 7 и ее доказательство указывают условия и общий 
способ спрямления {/„}” зависящие лишь от взаимного расположения 
подпространств @я, ®„ и не зависящие от частного выбора векторов hn 
и gn в этих подпространствах. Впрочем, можно показать, что опера­
тор А теоремы 7 выражается через векторы hn и gn так: если {hn, gny 
биортогональна и нормированы, то Ahn = gn. Отсюда следует, что 
спрямляемость {Л}“ равносильна возможности так выбрать hn, gn, 
чтобы базисы {/^ и {gX стали риссовскими (по определению 
п. К. Бари (3)).

Поступило 
26 IV 1950
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