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ОБ ОДНОЙ ЗАДАЧЕ СОБОЛЕВА ДЛЯ СПЕЦИАЛЬНОГО УРАВНЕНИЯ 
С ЧАСТНЫМИ ПРОИЗВОДНЫМИ ЧЕТВЕРТОГО ПОРЯДКА *

* Рассматриваемые нами вопросы возникли в связи с задачей, предложенной в 
1945 г. С. Л. Соболевым на заседании Московского математического общества. При 
доказательстве результатов этой заметки мы пользуемся приемами, во многом анало­
гичными тем, которые ранее были предложены С. Л. Соболевым.

(Представлено академиком С. Л. Соболевым 21 V 1950)

Рассматривается уравнение:

где Д = д2)дх2 + д^дў, а « — вещественная постоянная.
В рассматриваемой области G трехмерного пространства перемен­

ные х и у изменяются в ограниченной области D плоскости XY, &
Границу Г области D мы предполагаем простой замкнутой кри­

вой, непрерывная кривизна которой всюду превышает положительную- 
постоянную.

Задача (С) для уравнения (1) состоит в отыскании такого реше­
ния уравнения (1) в области G, которое удовлетворяет следующим 
граничным и начальным условиям:

п|г = 0 при всех t^O; (2)
ub=0 = <ро(х,у); du/dt^ = ^(х,у). (3)

Всюду в дальнейшем, если А — множество, то А обозначает замы­
кание, если же Л — число или функция, то А ‘обозначает величину, 
комплексно сопряженную.

Пусть Ф — совокупность достаточно гладких функций <?(х,у), оп­
ределенных в области D и исчезающих вне некоторой подобласти 
ДфСОфСО (подобласти для различных могут быть раз­
личными). Пусть, далее, НА — пространство Гильберта, состоящее из 
вектор-функций V (х, у), определенных в области D, комплексные ком­
поненты которых Vx(x,y) и ny(x,j) удовлетворяют условиям:

ШИч2 ++(V)
D

dx dy = 0 при всех <р(л:,у)€Ф. (4,2)
D

Скалярное произведение определено следующим образом:

(VO), V(2>) = [ VO) + ПО) V^] dx dy,
D
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а линейные операции определены как обычные линейные операции 
над вектор-функциями. Легко доказывается, что определенное таким 
образом пространство НА полно и сепарабельно. Очевидно, для глад­
ких векторов V (х, у) условие (4,2) интегрированием по частям при­
водится к условию div V = 0.

Линейное многообразие векторов V (х,у)ЕНА, компоненты которых 
суть полиномы от х и у, назовем линейным многообразием полино­
миальных векторов и обозначим через £2.

Лемма. Линейное многообразие полиномиальных векторов всюду 
плотно в пространстве НА в смысле метрики этого пространства.

Доказательство основывается на рассмотрении функции:
(*> у)

Sw (х, у) = J ^dx — VW dy,
(-Vo, y0)

где V (х,у) — усреднение \ {х,у}^НА с радиусом усреднения h, 
которое при h —»0 стремится к У(х,у) по метрике пространства НА и 
обладает производными всех порядков (х).

Доказывается, что SW(x,y) не зависит от пути интегрирования. 
Наконец, в силу известной теоремы (2) о том, что для всякой гладкой 
функции можно найти такую равномерно сходящуюся к ней после­
довательность полиномов, чтобы частные производные от полиномов 
равномерно сходились соответственно к частным производным этой 
функции, легко убеждаемся в справедливости леммы.

Теперь рассмотрим систему уравнений:

2TZ I 1 др _ 1 
д/ р ду ’ (5)

где,\л И ~ компоненты некоторой два раза дифференцируемой 
по ^траектории У(х,у, Л в пространстве НА, а Р (х, у, О — скаляр­
ная функция, удовлетворяющая условию (2).

Пусть Уб £2 с НА, тогда из (5) следует:

ДР = p«2d7x/dx (6)
и, следовательно, функция Р, в силу условия (2), при заданном Уб£2 
определяется однозначно. Таким образом с помощью системы (5) 
определен оператор А с областью определения £2, причем при задан­
ном Уб £2 компоненты Л V задаются правыми частями (5), где за функ­
цию Р следует брать решение уравнения (6) при условии (2). Оче­
видно, оператор А дистрибутивен.

Теорема 1. Оператор А с областью определения £2 является 
эрмитовым, т. е. для всякой пары У<])б£2 и У<2)б£2

(ЛУ<Д у(2)) = (У(’), ЛУ<2)). (7)

Доказательство. Имеем:

(ЛУ<0 у(2)) — (У(’Д лу<2>) =

D D
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Производная по t траектории V (х, у, t) ^Н. определяется соотношением’ 
lim В _ ^,y,t + ^-N(X,y,t) II _
л/-^о R & || - °’



интегрируя по частям, получим
(ДУ(Д У<2)) —(У<»), ДУ<2)) =

7 $ Р0^2) —Р™ VO)] + у J уя2> div У<» - PtDdivV* 2)] dx dy, 

* Г (V,V) = ||V||>0 называется нормой элемента

Dг

а принимая во внимание (2) и (4,2), получим (7).
Теорема 2. Оператор А ограничен на линейном многообразии 

Q, т. е. для всех V € Q

||ДУ||<«2||уц*

Доказательство. По определению
(8)

||ЛV||2 = (ЛУ, ЛV) =

= - “2 $ (AV)xdx dy + -1 U (ДУД + 4? И¥)у] dx dy. (9)

Интегрируя второй интеграл по частям, получим:

J 5 [17 ИVb + ИV)J dx аУ = ^HVMs-^Pdiv (ДУ) dx dy,
D Г D 

а на основании (2) и (4,2) легко убеждаемся, что (9) можно перепи­
сать в виде:

ЦДУІ^-^^ГДДУД^^. (10)
D

Применение неравенства Буняковского к (10) доказывает тео­
рему 2.

Лемма и теорема 2 позволяют по непрерывности расширить эрми­
тов оператор Д до самосопряженного единственным образом. Расши­
ренный оператор мы снова обозначим через Д. Легко доказать, что 
границы оператора А суть —ы2 и 0, т. е. inf (ДУ, V) = —w2, 
sup (ДУ, V) = 0, где указанные точные грани следует брать по все­
возможным У^На при условии ||У|| = 1. Отсюда следует (3), что 
спектр оператора А является замкнутым множеством, лежащим на 
отрезке [—«2, 0] вещественной оси.

Теорема 3. Для всякой области D, удовлетворяющей указан­
ным выше условиям, числа va = —«2, v*  = 0 являются собственны­
ми значениями оператора А, причем соответствующие им собст­
венные подпространства На и Нъ бесконечно мерны.

Теорема 4 (эквивалентности). Если гладкие вектор V (х,у, На 
и функция Р удовлетворяют системе (5) при условии (2), то функ­
ция Р удовлетворяет уравнению (1) и при заданном V опреде­
ляется однозначно. Обратно, каждому гладкому решению Р урав­
нения (1) при условии (2) соответствует вектор N£HA, который 
вместе с Р удовлетворяет системе (5). Этот вектор У^НА опре­
деляется при заданной функции Р с точностью до элементов, 
принадлежащих ортогональной сумме собственных подпространств 
На@Ны
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Очевидно, система (5) представима в виде: 
d2N [dt2 = AN. (И)

Задача (С) для уравнения (11) состоит в отыскании такой два раза 
дифференцируемой по t траектории V (х,у, t)<zHA, которая удовле­
творяет уравнению (11) и начальным условиям:

N\t^ = N^(x,y\ dNldt\t^ = N^\x,y}. (12)

Теорема 5. При произвольных начальных данных N^(x,y) и 
N^(x,y), принадлежащих пространству Гильберта НА, решение 
задачи (С) для уравнения (11) существует и единственно в указан­
ном классе траекторий пространства НА. Эта задача поставлена 
корректно в смысле сходимости по норме пространства НА.

Доказательство. Будем искать решение задачи в виде сте­
пенного ряда

(13)

который, как легко видеть, в силу (12) можно переписать в виде
“Др °° z2p+l

v Л <) - 2 (й А’^т + 3 w+тп 
р=0 р—О

где под нулевой степенью оператора А следует понимать тождест­
венный оператор. В силу ограниченности оператора А легко получаем 
оценку:

IIV (5 Л oil < и v«> (Л, Mil 2 -^ + Д ” ■ 3
р=0 р=0

или

1|У(х,Л/)1К (14)
Из неравенства (14) легко следует справедливость теоремы 5.
Пользуясь теоремой 5, можно доказать аналогичный результат 

относительно задачи (С) для уравнения (1), а именно:
Теорема 6. Если начальные данные ф0(х,_у) и фх(х,у) суть про­

извольные функции, непрерывные в D + Г, обладающие кусочно-не­
прерывными частными производными третьего порядка * в D и удов­
летворяющие условию (2), то решение задачи (С) для уравнения (1) 
существует и единственно в классе два раза непрерывно диффе­
ренцируемых функций. Далее, если-.

* Соответствующим образом обобщая класс рассматриваемых решений, можно 
избавиться от требований дифференцируемости, заменяя их требованием ограничен­
ности норм в соответствующих пространствах Гильберта.

(|Дф0|2 + |Афі|2) dx dy г,

то при каждом фиксированном интеграл Дирихле от реше­
ния, взятой по области D, будет мал вместе с е.

Институт математики и механики Поступило
Академии наук Арм.ССР 3 IV 1950
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