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В работе Г. Ю. Джанелидзе^) прикладные теории упругой дефор­
мации стержней получили широкое обобщение на основе естественной 
кинематической схемы, учитывающей влияние на продольные удлине­
ния переменности депланации сечений от кручения. Вместе с тем в 
этой работе для деформации за пределом упругости предложена упро­
щенная кинематическая модель, построенная на представлении о со­
хранении плоской формы сечений при всех видах деформации стержня 
включая кручение. Однако испытания свидетельствуют об углубляющем­
ся короблении сечений на всех стадиях пластического закручивания. 
При этом видимые по контуру сечений формы и размеры депланации 
близки к получающимся при той же степени закручивания на упругой 
стадии деформации.

Изложенное заставляет рекомендовать при построении прикладной 
теории пластической деформации стержней сохранить кинематическую 
схему, отвечающую упругой стадии *.  Кинематическая картина дефор­
мации будет описываться следующими уравнениями:

* Такое утвеождение было выекзззно В. В. Новожиловым ( ).
** Наличие последних слагаемых отличает уравнение (1) от соответствующих урав­

нений, принятых для упругой стадии в работе Г. Ю. Джанелидзе.

'2'

(1)
Здесь е продольное относительное удлинение; у^ и у^ —сдвиги 

в продольных плоскостях, параллельных главным центральным осям 
инерции сечения; s- среднее по сечению значение ss; т —относитель­
ный угол закручивания; и *2— компоненты кривизны оси стержня 
в плоскостях главных центральных осей инерции; х и у - координаты 

— функция кручения, удовлетворяющая уравнению 
ІУ условию д^дп = у cos (л, х) — х cos» (л, у/) и условию в тех же осях; <р •

дер = 0, граничному условию Лр/<
^<рбШ = О для определения постоянной, и у^ и у>3 дополнительные 

сдвиги сверх отвечающих форме чистого кручения*-.
Пренебрегая изменениями объема при деформации, можно написать 

следующие выражения для напряжений в сечении стержня: 

= 3[Л£г, ^yz rfyz’ (2)
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где (л переменный модуль сдвига, который, в соответствии с обще­
принятыми законами пластического деформирования, будем считать 
функцией интенсивности деформации:

Р = р (е), (3)

(4)
Имея в виду обычно малое значение сдвигов у и у 

вычислении е пренебречь ими. Тогда после подстановки 
получим:

можно ври 
из (1) в (4)

е = І^т№2+3(е + *іУ-*2Х + ^ (5)
где

Зависимость (3) должна быть установлена с помощью 
рования экспериментальных данных.
__ Обобщенные силы в сечении стержня, отвечающие обычной

апроксими-

решения задачи, когда не учитываются перерезывающие 
ставятся выражениями: силы,

схеме 
пред­

К— $ <^& = 3 j + — x2%+TO)rfQ; (a)

MX= j azyd£l=3 j p(ey + z1y2 — ^Xy 4-4®y)rfQ; (6)

^ = ~ S p(e% + ^ху — z2y2 + ^x}d£l- (в)

Mz ~ S ^XTyz ~ У ьЛ x — 
2 2

(r)

~ J = 3 p [e<p + \y(f> — x2x<p -j- to2] d£l, (д) Or» ' '

^-растягивающая сила, Mx и Му - изгибающие моменты; Ж - 
крутящий момент и В — бимомент. г

Крутящий момент Мг естественно разделить на два слагаемых:

* Выражение (4) получено в предположении = 0 = е„ = — 0 5е
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(8)

(9)

(Ю)



Дифференциальное уравнение равновесия элемента стержня, полу­
чаемое из уравнений работ сил при вариации относительным углом 
закручивания, будет иметь вид:

d£ + K+b = V. (11)

Здесь b — интенсивность внешней бимоментной нагрузки.
Уравнение (11) с помощью (7 д) дает возможность найти К, и 

тогда из (8) получается следующий результат для крутящего момента:

Мг = тТ— 3 j {ц. [еср + + т<р2] +
У

+ [л [еср 4- Xij/cp — х2Х<р-р тер2]} (ZQЙ. (12)

Подставляя затем в это уравнение и в уравнения для продольной 
силы и изгибающих моментов (7 а, б, в) модуль р, выраженный на 
основании зависимости (3), получим четыре уравнения с четырьмя 
неизвестными г, v.b х2 и т.

В такой общей подстановке, даже при простейших видах зависи­
мости (3), уравнения получаются весьма сложными. Однако задача 
может быть значительно упрощена в частных случаях. Ниже рас­
смотрены случаи деформации стержня с сечением, имеющим две оси 
симметрии, при симметричном относительно этих осей распределении 
интенсивности деформации е и соответственно значений модуля ц.

При этих условиях будем иметь:

(лх бШ = j = 5 =
2 2 2 2 2

= щр d£l — \ щр’б/Q = щрх dQ — j уру dH = 0. (13)
2 2 2 2

Получающиеся в каждом случае уравнения сначала приведены 
в общем виде, а затем преобразованы для материала, у которого 
модуль ц изменяется по параболическому закону:

р.= [л0[1—Зав?]. (14)

Такая зависимость удовлетворительно согласуется с опытом для 
начальной стадии пластического растяжения многих металлов.

1. Плоский изгиб с кручением при условии пренебрежимо малых 
бимоментных эффектов:

s = х2 = т = b = 0 *. (15)

* Здесь малость бимоментных деформаций предположена обеспеченной постоян­
ством относительного угла закручивания. С равным успехом можно поставить условие 
<р = 0 (случай сечений, близких к кругу).

Уравнение (14), если принять во внимание (5) и (15), примет вид:

^^[І-а^+З^2)]’ (16)

Уравнения (7 а, б, в, д) и (12) при условиях (15) и (16) дадут:

jZ2 = = В = 0; (17)



Мх = Зц^ Ux — «т2®фх — 3ах?0ж}; (18)

Мг — Рот {А — Зах’©^ — ат20^ф}, (19)

где Jx— экваториальный момент инерции сечения относительно оси х, 
■4 — геометрическая жесткость при свободном упругом кручении, а 
0фл ©Л ©и и ©^ф — новые характеристики сечения:

©Фх = J ф^П, 0и = J ^-d^l, 0W = J дао. (20)
2 2 2 2

Расчет хт и т по уравнениям (18) и (19) может быть произведен 
либо графически, либо путем подбора корней указанных уравнений.

Аналогичным путем разрешается задача в случае кручения с рас­
тяжением при сохранении того же условия малости напряжений, 
связанных с бимоментами.

2. Стесненное кручение с бимоментной нагрузкой:

е = х1 = х2 = 0. (21)

В этом случае отличными от нуля обобщенными силами будут лишь 
и В.

Принятая зависимость для модуля представится в виде:

^^-«(тТ + зЗД]. (22)

При условиях (21) и (22) из уравнений (12) и (7 д) получим:

Mz = Ро № k — «t30w — Зат2т (0^ — 20фф) —

— Зт/„ + 3атт20фф + 27 атт20ф} + й; (23)

В = Зр0т (Уф — ат20фф — 3ат20ф). (24)

Здесь введены следующие обозначения для новых характеристик 
сечения:

©^ = J Уф = J 0фф = J ф2^^^, 0ф = $ (25)
2 2 2 2

В общей форме уравнение (23) записывается так:

тт2 + Атт2 + Вт + Ст2т + £)т3 + Вт -р G = 0. (23')

где А, В, С, D и Е—постоянные величины.
Приближенное решение уравнения (23') может быть получено с 

помощью вариационного метода Б. Г. Галеркина или численного ин­
тегрирования.
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