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1. Пусть Q — область «-мерного пространства (хь х2, хп), огра­
ниченная гладкой замкнутой поверхностью S. Наиболее простая поста­
новка предельной задачи такова: в области Ц требуется найти 
функцию и (хх, ..., хп, t), удовлетворяющую уравнению:

п
\Ju = ^u — ~^ = f(xb...,xn,t), А = (1)

1=1 OXI
начальным условиям

zr |^=о = zz0 (х1; . . ., Хп), = Uy (х^ ..., xn); (2)

предельному условию:
и Is = ф (хь ..., хп, t), (3)

где f, и0, иь ф— заданные функции.
Предельной задаче для линейных уравнений второго порядка нор­

мального гиперболического типа посвящен ряд работ, которые можно 
разбить на три группы.

В работах первой группы (\ 2) доказывается существование реше­
ния в некоторой области, прилегающей к многообразию S, t = 0.

В работах второй группы (3, 4) решается волновое уравнение разло­
жением решения в ряд Фурье по фундаментальным функциям 
уравнения Гельмгольца; в работах этой группы не ставится вопроса 
о достаточных условиях существования решения.

В работах третьей группы (5~7) задача решается методом неполного 
разделения переменных для специальных ограничивающих поверхно­
стей (сфера, круг, цилиндр, конус) и специальных граничных условий.

2. В этой статье решается вопрос о существовании решения задачи 
(1), (2), (3) во всей области Q, ^^0 и вопрос о характере решения 
в зависимости от характера данных f, и0, ult ф. О поверхности S 
предполагается, что максимумы в Q производных фундаментальных 
функций уравнения Mi + /Ри — 0 при условии и 1$ = 0 растут не быстрее 
некоторой степени собственного числа X2 (показатель степени зависит 
от порядка производной). Нами доказано, что это имеет место для 
поверхностей Ляпунова, непрерывно дифференцируемых сколь угодно 
раз. Это требование не вытекает из существа задачи и может быть 
заменено любым другим, обеспечивающим существование в О, £>0
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сколь угодно гладкого решения при сколь угодно гладких данных 
Л «0, иь ф. Все остальные выводы при этом не изменятся.

3. Для того чтобы решение и^, хп, t) было v (v>2) раз 
непрерывно дифференцируемым в 0, ^>0, необходимо, чтобы на 
многообразии S, t = Q функции f, и0, иъ ф удовлетворяли v условиям 
согласованности

И=о=и°к’ ••• <4)

Простые примеры показывают, что эти условия не являются до­
статочными для существованиям раз непрерывно дифференцируемого

Теорема 1. Если /, «0, иь ф имеют непрерывные производные 
любого порядка и удовлетворяют условиям согласованности любого 
порядка, то существует решение, имеющее непрерывные производ­
ные любого порядка.'

Наметим доказательство теоремы. Пусть ^h{P, Q) отлично от нуля 
лишь для |Р, Q\<^h, имеет непрерывные производные любого порядка 
во всем пространстве и удовлетворяет условию:

j ^(Р, Q')d^lQ = 1.

Пусть vm (Р) и \т (т = 1, 2, ...) — все фундаментальные функции 
и собственные числа уравнения Дц + №v = 0 при условии v Is = 0. 
Пусть vm(P, h) есть усреднение vm ядром ^h{P, Q). Если расстояние 
Р ло S более h, то vm (Р, К) убывает быстрее любой отрицательной

степени Хт. Тогда (Р, Q) = vт(Р, /O^MQ) И, кроме того, ряд
т=1

2
m=l

sin \mt=Gh (P, Q, t) (5)

•И ряды, получаемые из_него дифференцированием по Q и t, сходятся 
равномерно, если Q€Q, —оо < со. Очевидно, для Gh имеем

Q, f) = 0, 0^^ = 0, ОЛ1^0 = 0,

Если и(х, 0 есть дважды непрерывно дифференцируемое решение 
задачи (1), (2), (3), то, применяя формулу Грина KunGh(P, О t— 
найдем ' ’’

.... «“йИ [°’ ^—1^-• о J
' п t

Н т) щЕ dS — \dAf (Q, т) Gh (Р, Q, t—T) J . (6) 
0 *---------------------- Q----------------о q >
Наоборот, если заданные f, и0, иь ф удовлетворяют условиям 

теоремы, то доказывается, что (6) дает решение поставленной задачи 
и имеет непрерывные производные любого порядка.

ПУСТЬ и ^2 в (&, [°, ^о]), где t0 — любое конечное число. Пусть 
іогда и(х, t) назовем обобщенным решением задачи (1), (2), (3) 

если и(х, t) удовлетворяет (1), (2), (3) в том смысле, что встречаю- 
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щиеся производные понимаются обобщенными (8), а граничные и 
начальные условия в смысле среднего квадратичного, т. е., например, 

(и — ф) dS-> 0, где и— значение и на параллельной к S поверхности.
s

Пусть f, и0, иь ф имеют суммируемые с квадратом обобщенные 
производные (8) соответственно до порядков а, 0, 0 — 1, у включитель­
но, причем на многообразии S, t — 0 выполнены почти везде условия 
согласованности до порядка Strain (а, 0 — 1, у), где 8^-1.

При этих условиях доказывается
Теорема 2. Существует единственное обобщенное решение 

нб Wl"1.
Сначала н0, иь f продолжаем в область содержащую Q внутри, 

так, чтобы они тождественно равнялись нулю вблизи границы 
После этого апроксимируем и№ f, усредняя их гладким ядром. 
Задав на границе S, области фі = 0, получим четверку функций 
fh, (n0)fe (+)а, Фі 0, удовлетворяющих условиям теоремы 1. Так как 
при Л-»0 fh, («0)л, (»і)л стремятся в смысле норм (6) статьи (9) к 
f, и0, Uy при А = min (а, 0—1), то существует функция и б W& кото­
рая, грубо говоря, удовлетворяет уравнению (1) и начальным усло­
виям. Тогда оказывается, что функция ф2 = ф—v Is допускает 
апроксимацию гладкими функциями (ф2)д в смысле норм (6) статьи (9) 
для k — 8—1; кроме того, четверка функций f=0, ио = О, ^ = 0, 
(ф2)л удовлетворяет условиям теоремы 1. Отсюда на основании теоремы 
1 и результатов статьи (9). следует существование решения.

Если 8—1<2, то и является решением задачи в смысле следую­
щего пункта 5. На доказательстве единственности не останавливаемся.

Если 8 — 1 > , то, в силу известного свойства пространства
8-2-ptE]

IF2, следует: ибС L 2 J. Отсюда и (%, t) будет дважды непрерывно 
дифференцируемой, если 8 = 4+ [^~] •

5. Пусть означает пространство функций ф (х1; ..., хп, t), имеющих 
непрерывные производные до порядка v в Q, —<х> <ft <foo, причем 
каждая <p^Ev отлична от нуля лишь в конечном промежутке [f, 
зависящем от <р. Последовательность {ф*} называется сходящейся к 
Фо(ф*бEv, ^бЯД если и % равны нулю вне одного итого же про­
межутка и ф* и ее производные до порядка v сходятся равномерно к 
Фо и ее соответствующим производным. Множество <f>(:Ev таких, что 
ф|5 = 0, обозначим Ev. Если и(х, t) есть дважды непрерывно диффе­
ренцируемое решение задачи (1), (2), (3), то для любой фбД имеем 

^«□ф(ШЛ=^ qfd£ldt-y ^^^dSdE— (ущ — и0 ^-^dQ. (7) 
tn tn t s n,^=o

Пусть — пространство линейных (аддитивных и непрерывных) 
функционалов в Еч, значения которых для фб£\, обозначим (р, 9). 
Будем говорить, что р = 0 в (t3, если (р, ф) = 0 для всякой фбЕ'ч, 
для которой (f, t^^c(t3, tf}. Тогда (7) может быть записано в виде

(р, □ ф) = (<7, ф) (фбЕ-^ рб£о, ^б^ь р = 0, <7 = 0, ^<0). (8)

Пусть теперь задан сб£^ (<7 = 0, ^<^0). Если рб^ таково, что для 
него имеет место (8), какова бы ни была фб+>, то р назовем функцио­
нальным решением обобщенной предельной задачи.
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Теорема 3. Если, с^Е\ (а = 0, Z<0), то существует единст­
венное функциональное решение обобщенной предельной задачи

^Е*р, р = 4+[Ц^] (р = 0, ^<0).

Доказательство состоит из следующих частей:
1 ) Для всякого значение (а, ср) для 'фЕ^ можно апроксими- 

ровать в виде правой части (7), где f, ио = О, м1 = 0, ф удовлетворяют 
условиям теоремы 1. Пусть ра соответствующее решение.

Для всякой <?^ЕО
ОО

\ р/гф dQ dt
—оо £2

имеет конечный предел и, следовательно, как слабый предел функцио­
налов из Е*р есть функционал из Е*р.

Поступило
18 V 1950
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