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1. В настоящей заметке изучается система из п = 2т дифферен­
циальных уравнений, которая в векторно-матричных обозначениях 
может быть записана в следующем виде:

d± = MH(t)x, (1)

где х = х (0 — «-мерная вектор-функция; к —некоторый параметр; 
И (t) = Ил (ОН" — вещественная симметрическая матрица, элементы ко­
торой суть суммируемые периодические функции „времени" t: H(t+ «)= 
= И (t) (— оо<£<оо), а

Вид (1) имеет всякая система канонических уравнений механиче­
ской системы с т степенями свободы в том случае, когда гамильто­
ниан этой системы является квадратичной формой от обобщенных 
координат qb q» ...,qm* обобщенных импульсов рь р* ...^рт с коэф­
фициентами— периодическими функциями t, при этом х 
пЛ,...,рт\ а X можно считать равным единице.

В системе (1) приводится всякая Система дифференциальных урав­
нений второго порядка вида:

^ + ^p^y = 0, (2)

ГДе j = _у (t) — /«-мерная вектор-функция, а Р (t) — Р (t + со) симмет­
рическая матрица-функция.

А именно, если обозначить через х прямую сумму векторов у и 
^dv/dt, то вектор х = (у, ^dy/dt), в силу (2), будет удовлетворять 
уравнению (1), в котором матрица И Ц) есть прямая сумма матриц 
РИА и 1т-

Пусть И = — матрица-функция, являющаяся решением
следующей системы:

^ = TJHU, =
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По известной, теореме Ляпунова —Пуанкаре (см. (г), стр. 226) ха­
рактеристический полином det (U (ы; X) — р/„) матрицы монодромии 
Z7(w; X) является возвратным. Его корни рх (X),..., р„ (X) называются 
мультипликаторами.

Все решения уравнения (1) при данном X будут ограничены в ин­
тервале (0, оо) в том и только том случае, если при этом X все муль­
типликаторы по модулю равны 1 и все элементарные делители 
матрицы монодромии линейны.

Открытый интервал (а, [3) (— оо а, р оо) вещественной оси на­
зывается зоной устойчивости, если для всех значений X из этого 
интервала все решения уравнения (1) ограничены и никакой больший 
интервал, содержащий (а, р), этим свойством не обладает.

Задача об определении зон устойчивости уравнения (1) играет 
важную роль в различных вопросах механики и радиотехники (в во­
просах параметрического резонанса, динамической устойчивости и др.).

Для случая скалярного уравнения (2) основные результаты о суще­
ствовании зон устойчивости, их расположении, а также методах их 
определения были получены А. М. Ляпуновым (w). Несмотря на важ­
ность задачи обобщения всех этих замечательных исследований 
А. М. Ляпунова на случай векторных уравнений, нам неизвестно ни­
чего существенного по этому вопросу, кроме того, что было указано’ 
в (г) самим А. М. Ляпуновым.

Здесь приводятся некоторые результаты наших исследований в 
этом направлении.

2. В дальнейшем, не оговаривая этого, мы будем предполагать вы­
полненным условие:

А. Для любого t форма 

(^0) (3)

неотрицательна, а ее среднее по аргументу t в интер­
вале (0, ы) положительно.

В этом предположении теорема Ляпунова — Пуанкаре может быть 
дополнена следующим предложением.

Теорема 1. При любом невещественном X т мультипликаторов 
уравнения (1) лежат внутри единичного круга, а другие т — вне его.

Будем рассматривать значения X из верхней полуплоскости: 1шХ>-0. 
Мультипликатор р (X) будем называть мультипликатором первого 
или второго рода в зависимости от того, лежит ли он внутри 
единичного круга или вне. Пусть а — какая-либо точка верхней плос­
кости, в некоторой окрестности которой мультипликаторы первого 
рода рх (X), р2 (X),..., рот (X) могут быть определены как однозначные 
аналитические функции. Пусть один из этих мультипликаторов р (X), 
будучи аналитически продолжен по пути, ведущему из точки а в 
некоторую вещественную точку а, не являющуюся точкой разветвле­
ния, попал на единичную окружность |р(а)| = 1. Так как при отобра­
жении Х-»р(Х) верхняя полуокружность точки а переходит во внеш­
нюю часть единичного круга, то р'(а)=^=0, и, если комплексное число 
р' (а) изобразить вектором с началом в точке р (а), то этот вектор 
будет касаться единичной окружности и будет направлен против часо­
вой стрелки (Zр'(а)/р(а)<0). Мы приходим к следующей простой и 
важной теореме.

Теорема 2. Если при возрастании параметра X от вещест­
венного а до некоторого р > а какой-либо мультипликатор первого 
рода движется по единичной окружности, то его движение про­
исходит монотонно против часовой стрелки.
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3. Рассмотрим краевую задачу:

= х(0) = — х(<о); (4)

В силу теоремы 1 характеристические числа этой задачи вещест­
венны. Можно показать, что среди них всегда имеются положитель­
ные; пусть Ло — наименьшее из них.

Нетрудно показать, что
О)

Л0>2(.^(0 dt^;
О

где Г/ R)— наибольшее из характеристических чисел матрицы HR).
После ряда довольно тонких рассуждений относительно того, что 

происходит при встрече мультипликаторов одного и того же рода 
или различных родов в их движении по единичной окружности, 
удается установить теорему:

Теорема 3. Интервал 0<X <Хо принадлежит зоне устойчи­
вости уравнения (1).

4. Если уравнение (1) получено указанным в п. 1 преобразованием 
из уравнения (2), то число будет наименьшим характеристическим 
числом краевой задачи

g + ^(OA = O; у^) = -у^), У(0) = -УИ- (5)

Пусть y0R)ф0 — некоторое решение этой системы при р. = Л^. 
Оно, очевидно, обладает свойством _у0 R + со) = —у0 (I) (— <х> < оо)- 
Положим

/? = max|j/0(f)|, V = шах |у (^) I.

Поясним, что, если и = Rib ...,ип) — вектор, то | и I обозначает его 
евклидову длину.

Длина А дуги у = y0R) (т < т + со) в m-мерном пространстве, 
очевидно, не зависит от выбора числа т. С другой стороны, она не 
меньше, чем расстояние между ее началом у0 (т) и ее концом у0 (т + со) = 
= —ь(4

Отсюда

2R^L = (6)
О

Пусть теперь т выбрано так, что И=|У (т)|. Интегрируя обе части 
уравнения (5) в пределах от т до т + со, найдем

2И = 2|у(^)1 = Ло| P^y^dt itR)dt, (7)

где к (7)— наибольшее характеристическое число матрицы PR).
Сопоставляя (6) и (7), мы получаем нижнюю оценку для откуда:
Теорема 4. Если симметрическая матрица Р R) удовлетворяет 

условию X, то при
СО

О

все решения уравнения (2) ограничены.
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Для случая т = 1 теорема 4 в точности совпадает с известной 
теоремой А. М. Ляпунова (см. (г), стр. 217).

Теорему 4 можно доказать при более широких условиях относи­
тельно матрицы P(t), так чтобы она охватывала и недавнее обобщение 
теоремы А. М. Ляпунова, полученное для скалярного уравнения (2) 
Боргом (7).

5. При т = 1 (га = 2) система (1) будет иметь два мультипликатора: 
один р(Х)— первого рода и второй р-1(Х)— второго рода (ImX>0). 
Исследование их движения при X, меняющемся от 0 до оо, приводит 
к таким неравенствам:

О Ao Aj < X, Х2 <С Л2 < А3 Х3 Х4 ... (8)

Здесь Ао Ах < Д2 А3 <Д .. — положительные характеристические 
числа краевой задачи (4), а Хх<;х2<;х3<;х4<\..— положительные 
характеристические числа краевой задачи:

“ = X JHx, х (0) = х (w). (9)

Для случая скалярного уравнения (2) неравенства (8) впервые были 
установлены А. М. Ляпуновым (4), который к ним пришел другим 
путем.

При га = 2 для уравнения (1) можно сформулировать теорему, бо­
лее полную, чем теорема 2.

Теорема 5. При непрерывном возрастании X от A2*+i до Х2*_і 
(от Ъчь до Аз?) мультипликатор р (X) движется против часовой 
стрелки по полуокружности от — 1 до 1 (от 1 до — 1).

Для случая скалярного уравнения (2) теорема другим методом бы­
ла установлена Путнэм.

Аналогичное теореме 5 утверждение можно высказать и в отно­
шении отрицательных характеристических чисел краевых проблем (4) 
и (8).

Для случая п = 2/га > 2 нам удалось доказать существование бес­
конечного числа зон устойчивости уравнения (1), уходящих в обе 
стороны на бесконечность, только в предположении, что матрица H(t) 
дважды непрерывно дифференцируема и что все ее характеристиче­
ские числа положительны и различны при любом t.

При более общих предположениях вопрос остается открытым.
Поступило
22 V 1950
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