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КОНФОРМНАЯ НАЛОЖИМОСТЬ ПОВЕРХНОСТЕЙ

(Представлено академиком А. Н. Колмогоровым 22 V1950)

А. П. Норден рассмотрел общую теорию нормализованных поверх­
ностей пространства Мебиуса как поверхностей, в каждой точке ко­
торых определен круг, проходящий через данную точку и ортого­
нальный поверхности. На каждой нормализованной поверхности 
определяется внутренняя геометрия Вейля, соответствующая нормали­
зации поверхности (х).

Мы определим конформную наложимость нормализованных поверх­
ностей *.

* Возможность аналогичного определения аффиной и проективной наложимости 
была установлена в диссертации А. П. Нордена в 1937 г. (4) и с другой точки зрения
Г. Ф. Лаптевым в диссертации 1941 г. (“).

Определение 1. Две нормализованные поверхности конформно 
наложимы, если их внутренние геометрии совпадают.

Из деривационных формул для нормализованных поверхностей (х) 
следует геометрическая интерпретация конформной наложимости 
нормализованных поверхностей, которую мы выразим в виде опреде­
ления 2, эквивалентного определению 1.

Определение 2. Две нормализованные поверхности S и5 кон­
формно наложимы, если можно установить взаимно-однозначное соот­
ветствие наложимости между точками поверхностей S и S так, что 
для каждой пары сходственных точек М и М существует конформное 
преобразование, переводящее поверхность S в положение S', которое: 
а) совместит сходственные точки М и М поверхностей S и S, каса­
тельные сферы 5 и 5' и нормализующие круги поверхностей S и S 
в точках М и М; б) при проектировании близких к точке М = М, 
соответственных точек М*  и М*  поверхностей S' и S из произ­
вольной точки касательной сферы 5 = 5 кругами ортогонально на ка­
сательную сферу 5 = 5 мы получим точки М**  и М**  такие, что рас­
стояние между точками ММ и М**  будет бесконечно малым 3-го по­
рядка по сравнению с расстоянием их от общей точки М = М.

В частном случае нормализация может быть определена кругами, 
ортогональными одной неизменной сфере А. В этом случае теория 
нормализованных поверхностей совпадает с теорией поверхностей 
пространства постоянной кривизны (Д и конформная наложимость так 
нормализованных поверхностей (определения 1 и 2) совпадает с ме­
трической наложимостью в пространстве постоянной кривизны.
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Рассматривая поверхность как огибающую конгруенции ее цен­
тральных сфер (3), мы определим конформную наложимость поверх­
ностей, на которых нормализация не определена. Р

Определение 3 Поверхности конформно наложимы если 
пеитпДаЮТ гео“етРии Римана> определяющие угловые метрики их 
центральных сфер. н

Определенная таким образом конформная наложимость поверхно- 
и совпадает с конформной наложимостью нормализованных третьим 

инвариантным кругом поверхностей (Д. F
1ЯЯ нал0ЖИМ05ть Картана по отношению к конформной 

группе, т. е. требуя, чтобы расстояние между точками поверхностей 
не только их проекциями было бесконечно малым 3-го порядка (2) 

устанавливаем, что у двух поверхностей, наложимых в смысле Кар- 
тана, совпадают угловые метрики центральных сфер и линии кри­
визны являются соответственными в соответствии наложимости. Нало- 

В С”ЫСле КаРта«а является, таким образом, частным случаем 
ленияе<1еиН2)И НЭМИ КОНФ°РМНОЙ наложимости поверхностей (опреде- 

Для изучения конформной наложимости поверхностей мы рас- 
“ГР™ ““/РУ'»4"10 центральных сфер ‘огибающиин кото-
Р рДи данная поверхность х(и\ и2) и поверхность X и2). 
л “ обозначить через = д& производные координат по криво­
линейным координатам, то сферы х(и% определяют

пМ КОНФ°РМНЫЙ репер- Билинейные коварианты введенных cS 
при соответствующем нормировании имеют следующие значения:

хх = ХХ = х£ = = Х^ = Х^ = О,

^ = ^=1, ^ = gij.

нейныТмІТ пР^^ пентасферических координат по криволи­
нейным, мы получим следующие уравнения: н

— gr8bri^>s ”Ь ЦХ, 

діХ = ~ grsarils~ i-x, 

VXi ^jX 4~ Ь^Х g<jZ-
(AJ

Коэффициенты этих разложений будут 
= giidu1 dui'определяет угловую метрику 
ности, a gV — тензор, взаимный gij.

Условия интегрируемости системы (AJ

тензорами, форма d<f>2 = 
центральных сфер поверх-

запишутся в виде

Ьщ/^b^, К = = - 1, Л3 = 0; (В1)

ai и /*] + #/ [jlk] = 0; (В2)

= — Р%3+1; grsar[ibj}s = (вз)

где х —кривизна метрики gi}, ^ — тензор, взаимный тензору Ьа& и 
ковариантное дифференцирование производится в метрике Ригана g і

Вводя нормированный тензор сети, изотермический вметрике 

g"’ а также тензоры с{} = g^b^ и = g^aj, где g*~ версор определи- 
ЮЩНИ поворот вектора на 90» в определ/я вектор т» равенство»

U / k] — [jlk}, (Ь) 438



получим отсюда и из условия (В1)

Ьц I k = c^k, где Ik = gkh;

пц I k = ^ij^k, где т* = (b )

Условия интегрируемости (b1) запишутся в виде:

х = — IJ = — b •

Так как Ьц допускает разложение

Ьц = пц cos <p + пц sin ф, (Ь')
то имеем

lk = ^k — уъ где = g'k^. (b")

Условия интегрируемости (В) эквивалентны уравнениям (b), (Ь') 
и (Ь") вместе с уравнениями:

ац = Hgu — 0^) Ьц — j (glJ'?t I /) Сц,

(В')
at и I *] + a‘ =

Здесь тензоры т^ц, могут быть выбраны определенным образом 
в заданной метрике gij.

Система (В') представляет систему двух уравнений в частных 
производных относительно неизвестных функций ^(и1, и2) и Н (и1, и-)-

Приводя систему к нормальному виду и применяя теорему С. Ко­
валевской, имеем: как бы ни была задана метрика Римана ga, суще­
ствует бесконечное множество поверхностей пространства Мебиуса, 
зависящее от четырех произвольных функций одного аргумента, 
которые имеют в качестве угловой метрики своих центральных сфер 
заданную метрику Римана ga, т. е. конформно наложимых друг на 
друга.

Отметим некоторые результаты, вытекающие из рассмотрения 
уравнений (В').

1. Всякие две наложимые в смысле Картана неизотермические 
поверхности конформно тождественны (6). Совокупность изотермиче­
ских конформно не тождественных поверхностей, наложимых на дан­
ную, зависит от одной произвольной постоянной. Все поверхности, 
наложимые в смысле Картана на минимальные поверхности простран­
ства постоянной кривизны (3), могут быть получены конформным пре­
образованием из поверхностей пространства постоянной кривизны, 
имеющих постоянную среднюю кривизну.

2. Со всякой ТИ-минимальной поверхностью (3) связывается семей­
ство оо1 ЛГ-минимальных поверхностей, конформно наложимых на 
данную так, что линиям кривизны одной из поверхностей семейства 
соответствует на другой поверхности семейство изогональных траек­
торий ее линий кривизны. Мы будем говорить, что семейство это 
получено элементарным изгибанием из данной поверхности.

3. Все минимальные поверхности пространства Евклида конформно 
наложимы друг на друга и имеют угловую метрику центральных 
сфер постоянной кривизны х=1. Всякой метрике Римана, для кото­
рой выполняется соотношение

х = —1), 
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и только такой, соответствует оо1 минимальных конформно не тожде­
ственных поверхностей пространства постоянной кривизны (3), получа­
ющихся одна из другой элементарным изгибанием. Две минимальные 
поверхности, не переводимые друг в друга конформным преобразова­
нием или элементарным изгибанием, не могут быть конформно нало­
жимы.

4. Если на изотермической поверхности с угловой метрикой цен­
тральных сфер х = const принять линии кривизны в качестве пара­
метрических линий, то линейный элемент угловой метрики централь­
ных сфер имеет форму Лиувилля. Обратно, если мы определим 
в метрике постоянной кривизны сеть, в которой линейный элемент 
принимает форму Лиувилля, то всегда ее можно принять за сеть 
кривизны некоторой изотермической поверхности, угловая метрика 
центральных сфер которой будет иметь заданную метрику Римана.

5. В каждой точке произвольной поверхности определяются три 
конформно инвариантных круга (х), лежащие на одной сфере. Круги 
параболического пучка, определяемого этими тремя кругами и обра­
зующие с ними постоянное ангармоническое отношение, определяют 
оо1 конформно инвариантных нормализаций поверхности и совокуп­
ность соответствующих внутренних геометрий. Совокупность поверх­
ностей, не наложимых в смысле Картана, но конформно наложимых 
одна на другую так, что на них все эти геометрии совпадают, 
может быть получена из одной поверхности семейства элементарным 
изгибанием или конформным преобразованием. Совокупность поверх­
ностей, допускающих такую наложимость, но не принадлежащих 
классу Ж-минимальных и изотермических поверхностей, зависит от 
шести произвольных функций одного аргумента. Всякая не изотер­
мическая, не Ж-минимальная поверхность, исключая указанное мно­
жество поверхностей, с точностью до конформного преобразования 
определяется заданием двух своих тензоров gij, lk, которые опреде­
ляют внутреннюю геометрию Вейля, соответствующую нормализации 
с помощью первого инвариантного круга (нормального круга поверх­
ности).

Казанский государственный университет Поступило
им. В. И. Ульянова-Ленина 241 1950
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