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Окончание таблицы 1 
 

Угол 

атаки 
Распределение воздушных масс вокруг сцепа вагонов 

с длинномерным грузом 

60 

  

90 

  

Таким образом, при изменении угла атаки воздушных потоков по отношению к подвижному со-

ставу наблюдаются завихрения, которые приводят к неравномерности нагрузок, действующих на 

его конструкцию, что может привести к возникновению вибраций и колебаний, а также оказывают 

влияние на устойчивость поезда, особенно при высоких скоростях движения поезда и перевозке 

несимметричных, негабаритных и имеющих сложную геометрию грузов. Нестабильные потоки 

воздуха могут вызывать отклонения от курса, что увеличивает риск аварийных ситуаций. 
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Прочность и надѐжность несущих элементов железнодорожного подвижного состава напрямую 
влияет на безопасность перевозок и долговечность эксплуатации вагонов. Одним из основных кон-
структивных элементов тележки является боковая рама, воспринимающая нагрузки от кузова вагона 
и передающая их на буксовые узлы и рельсовый путь. В процессе эксплуатации боковая рама подвер-
гается значительным статическим и динамическим воздействиям, что может приводить к возникно-
вению усталостных повреждений. Для повышения надѐжности и сокращения объѐмов натурных ис-
пытаний на этапе проектирования и прогнозирования остаточной долговечности широко применяется 
численное моделирование с использованием, например, метода конечных элементов. 

Целью представленной работы является сравнение результатов натурных испытаний и конечноэле-

ментных расчетов, полученных с помощью специализированных программных инженерных пакетов. 
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Результаты проведенных испытаний [1] показали, что основные разрушения боковой рамы те-

лежки происходили в области сливного отверстия. Зарождение усталостной трещины наблюдалось 

в месте перехода закругления рамы к площадке под пружины. В некоторых случаях в изломе также 

фиксировалось небольшое количество флокенов, а аналогичные повреждения были замечены и на 

наклонном поясе. 

Для отработки методики проведения усталостных испытаний на основе компьютерного моде-

лирования проведено сравнение результатов испытаний, приведенных в [1], с результатами расче-

тов параметров напряженно-деформированного состояния рассматриваемого конструктивного эле-

мента, полученных посредством компьютерного моделирования в средах SolidWorks и ANSYS 

Workbench (модуль Static Structural). Конечно-элементные модели боковой рамы тележки в двух 

указанных программных комплексах были построены на основе предварительно разработанной 

твердотельной трехмерной модели, включающей основные геометрические элементы реального 

объекта (рисунок 1, а). При разбиении геометрической модели на конечные элементы использова-

ны объѐмные тетраэдральные конечные элементы.  
 

а) 

 
б) 

 
в) 

 
Рисунок 1 – Геометрическая модель (а) и результаты расчета эквивалентных (по Мизесу) напряжений                                                              

в конструкции боковой рамы тележки, полученные в SolidWorks Simulation (б) и ANSYS (в) 
 

В качестве материала принята конструкционная сталь со следующими характеристиками: мо-

дуль упругости 2·10
11 
Па; коэффициент Пуассона 0,3; предел текучести 241 МПа. Граничные усло-
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вия включали закрепления в зонах сопряжения с надрессорной балкой и буксовыми узлами. 

Нагрузки имитировали действие веса кузова (вертикальная нагрузка, равная 230 кН в зоне установ-

ки пружин) и сил взаимодействия с рельсовым путѐм (боковая нагрузка, приложенная в зонах бук-

совых узлов и имитирующая воздействие горизонтальных сил от колѐсной пары, равная 80 кН) в 

соответствии с [2].  

В результате численного анализа получено распределение эквивалентных напряжений по Мизе-

су (см. рисунок 1, б, в). При этом расхождение в результатах компьютерных расчетов составило 

менее 0,1 %. А разница с результатами натурных испытаний составляет не более 3 %. Это свиде-

тельствует о том, что применѐнные подходы компьютерного моделирования могут быть с доста-

точной точностью и достоверностью использованы при разработке методик усталостных испыта-

ний конструктивных элементов железнодорожного подвижного состава.   
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При динамико-прочностных испытаниях в числе прочих показателей оцениваются коэффициен-

ты запаса сопротивления усталости для металлоконструкций вагонов [1]. В нормах для несамоход-

ных вагонов приведены формулы эквивалентного напряжения, позволяющие оценить усталость 

металлоконструкций в рамках вероятностного подхода. Для локомотивов и моторвагонного по-

движного состава данный коэффициент обычно оценивается по более консервативному детермини-

стическому подходу. В таком подходе наличие напряжений выше предела усталости не предпола-

гается [2]. В вероятностном подходе учитывается история нагружения в виде парциальных долей 

амплитуд напряжений разного уровня, что делает его более точным в сравнении с детерминистиче-

ским подходом. Тем не менее неопределенность в показателе степени кривой усталости и возмож-

ность принятия коэффициента запаса в широком диапазоне приводит к менее точным оценкам дол-

говечности конструкций [3]. В соответствии с вероятностным подходом в расчетной оценке 

решается задача о вынужденных колебаниях металлоконструкций экипажной части, затем ампли-

туды напряжений группируются по степени частоты их возникновения и строится гистограмма зна-

чений напряжений. Для более удобного интегрирования иногда гистограмма описывается функци-

ей распределения случайной величины [4]. 

В ГОСТ 34939–2023 и ГОСТ 33796–2016 приведена формула для расчета усталости по вероятност-

ному подходу, основанная на принципе линейного суммирования повреждений. Она позволяет рассчи-

тывать вероятность разрушения, ресурс для заданной вероятности или коэффициент запаса: 
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где Nсумм – общее число циклов; ti – доля числа циклов, соответствующая i-му уровню в блоке 

нагружения; NG – число циклов при значении напряжений, равном пределу выносливости детали, 
соответствующее точке перелома кривой усталости; ар – критическое значение повреждения; m1 и 

m2 – степенные показатели для двух участков  кривой усталости; ζai и ζamax – амплитуда напряжений 
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