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Гидравлический привод находит широкое применение в автомобильной и аэрокосмической 

промышленности, в горных и дорожно-строительных машинах, в станкостроении и других отрас-

лях машиностроения. Широкое использование гидропривода определяется рядом существенных 

преимуществ, прежде всего, возможностью получения больших усилий и мощностей при малых 

размерах и весе, повышенной жесткости и долговечности, а также надежности в эксплуатации и 

достаточно высоком значении КПД.  

Ограничивают применение гидропривода присущие ему недостатки. Это потери на трение и 

утечки, особенно при высоких давлениях в гидросистеме, снижающие КПД гидропривода и вызы-

вающие разогрев рабочей жидкости. Увеличение давления в гидросистемах требует повышения 

герметичности прецизионных соединений в основном за счет повышения точности изготовления 

сопрягаемых деталей. 

Целью работы является анализ методики определения функциональной точности элементов 

прецизионных пар гидропривода. 
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Одним из путей повышения надежности гидропривода является установление оптимальных за-

зоров в прецизионных парах трения, таких как плунжер-втулка, золотник-корпус и т. п. Наимень-

шая величина зазора зависит от коэффициента линейного расширения деталей, диапазона рабочих 

температур, рабочей жидкости, точности формы сопрягаемых поверхностей и др. При уменьшении 

зазоры становятся соизмеримыми с изменением размеров от температурных воздействий, что мо-

жет привести к заклиниванию подвижных деталей при нагреве. Увеличение зазоров вызывает зна-

чительное возрастание утечек жидкости и ухудшение работы гидропривода. Ситуация усложняется 

тем, что детали нагреваются неравномерно и изготавливаются из материалов с различным коэффи-

циентом линейного расширения. Таким образом, определение оптимальных зазоров представляет 

неоднозначную противоречивую задачу. 

Минимизировать влияние указанных факторов возможно при правильном конструировании, из-

готовлении и эксплуатации гидроприводов. При этом принимается во внимание изготовление уни-

фицированных узлов гидропривода централизованного производства специализированными пред-

приятиями, а также типовых узлов специального назначения. В современных технологиях 

размерной обработки осуществляется переход от размерной стандартизации к функциональному 

нормированию в зависимости от точности функциональных параметров [1]. 

Функциональный допуск каждого элемента прецизионной (плунжерной или золотниковой) па-

ры равен сумме конструкторского Тк и эксплуатационного Тэ допусков: 
 

                                                            ф к э к ,t рT = Т +Т = Т +Т +Т      (1) 
 

где Тt – допуск температурной деформации элемента; Тp – допуск на деформацию элемента в ре-

зультате перепада давления. 

Начальный зазор ε0 в сопряжении определяется в нерабочем состоянии гидросистемы. Он фор-

мируется конструктивной точностью сопряжения и может принимать значения в пределах кон-

структорских допусков. Функциональные зазоры εф образуются в процессе эксплуатации гидропри-

вода от температурных деформаций и деформации от перепада давления. В результате 

температурной деформации в зависимости от материала сопрягаемых деталей минимальный функ-

циональный зазор min

ф  может быть как больше, так и меньше первоначального конструкторского 

зазора min

0ε , а увеличение зазора в связи с перепадом давления следует учитывать при больших дав-

лениях рабочей жидкости (до 100 МПа и больше) [2].   

Радиальный зазор в прецизионном сопряжении с учетом изменения давления и температуры  

определяется по формуле 

                                                             ε ε Δε Δεo t р= + +  ,                  (2)  
 

где εо – конструктивный зазор исходя из конструкторской точности сопряжения; Δε t
 и Δε р – изме-

нение зазора в зависимости от температуры и давления рабочей жидкости соответственно.  

В развернутой форме с учетом известных соотношений [2, 3] после некоторых преобразований 

получим выражение  

                                         
2

o к 2 2
к

ε ε 2 Δ μ 1 μ

2

n

n

pr R + r pr
= + r t + + +

E ER r

 
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,                (3) 

 

где 
к nΔα α α=   – разность коэффициентов линейного расширения материалов сопрягаемых дета-

лей корпуса кα  и плунжера (золотника) αn ; Δt – разность между температурой материала сопряга-

емых деталей и исходной (начальной) температурой oΔ ;t = t t p  – давление рабочей жидкости;                            

r  и R  – соответственно наружные радиусы плунжера (золотника) и корпуса; 
к ,E  ,nЕ  

кμ , μn
 –  

модули упругости и коэффициенты Пуассона материала корпуса (гильзы) и плунжера (золотника) 

соответственно. 

На основе канонической формулы [3] определения удельных утечек, получим выражение для 

определения утечки жидкости через зазор шириной πd в цилиндрической паре диаметром d и дли-

ной рабочей поверхности l: 
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12μ

p d
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l
.      (4) 

 

В соответствии с положениями теории погрешностей технических измерений, определив част-

ные производные от выражения (4) по функциональным геометрическим параметрам, получим за-

висимость для определения допуска δQ на величину выходного параметра. Далее, используя выра-

жения для частных производных, фиксируя последовательно допуски частных значений параметров 

на нулевом уровне, получим зависимости для определения допусков на основные функциональные 

параметры прецизионной пары: 
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Таким образом, применение принципов функционального нормирования точности при проекти-

ровании и изготовлении основных элементов прецизионной пары позволит обоснованно подойти к 

назначению допусков на основные геометрические параметры, оценить правильность назначения 

допусков, выявить технологические возможности взаимозаменяемости и повышения стабильности 

работы сопряжения. 
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Адаптивные элементы систем различного назначения, построенные на использовании эффекта 

памяти формы, нередко представляют собой тонкие оболочки. Так, актуаторы, демпферы колеба-

ний могут быть выполнены в виде сильфонов [1], клапаны – в форме тонких пологих оболочек [2], 

рабочие элементы эластокалорических тепловых насосов – в виде тонких цилиндрических труб [3]. 

Однако несмотря на очевидную необходимость теории тонких оболочек из сплавов с памятью, опи-

сывающая по крайней мере основные наблюдаемые явления до сего дня не разработана. Трудности, 

связанные с физически нелинейным деформированием сплавов с памятью [4], в том числе с отсут-

ствием в общем случае конечных уравнений состояния и с записью инкрементальных определяю-

щих соотношений в форме, разрешенной относительно малых приращений фазово-структурных 

деформаций, требующей либо сложной процедуры аналитического обращения [5], либо численного 

обращения матрицы касательной податливости в точке диаграммы деформирования [6], препят-

ствуют формулировке модели оболочки в обобщенных перемещениях. Данное затруднение может 

быть преодолено путем перехода ко «внутренним» кинематическим переменным – компонентам 

тензоров тангенциальной и изгибной деформации, связанным уравнениями совместности [7], и по-

становке краевой задачи для уравнений равновесия и совместности относительно обобщенных уси-

лий, не требующих обращения определяющих соотношений.  

Такая теория тонких оболочек с памятью [8–10], основанная на однократно связной модели 

термоупругих фазово-структурных превращений [4], построена путем редукции пространственной 
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