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О СХОДИМОСТИ КРИВЫХ ПО ДЛИНЕ И О КРИВОЛИНЕЙНОМ 
ИНТЕГРАЛЕ ЛЕБЕГА

(Представлено академиком А. Н. Колмогоровым 17 IV 1950)

1. Условимся обозначать через К тело множеств, содержащее 
максимальное множество Е; через К" — замкнутое тело множеств. 
Условимся также считать все встречающиеся в дальнейшем функции 
множества конечными.

Введем следующие определения*:
I. Функции множества семейства {Фа (Н)}, определенные на систе­

ме множеств да, назовем равностепенно непрерывными на да, если 
для каждой невозрастающей сходящейся к нулю последовательности 
множеств {Нп} этой системы

1ішФа(Я„) = 0 (1)
П —> ОО 

равномерно относительно а.
II. Функции множества семейства {Фа(Я)} назовем сильно равно­

степенно непрерывными на да, если равенство (1) справедливо равно­
мерно относительно а для всякой сходящейся к нулю последователь­
ности множеств {Нп} этой системы.

Теорема 1. Для семейства {Фа(//)} вполне аддитивных функ­
ций множества, определенных на теле К*, условия равностепенной 
и сильной равностепенной непрерывности эквивалентны.

Вместе с функциями семейства {ФДН}} сильно равностепенно 
непрерывны и все три их вариации: положительные, отрицатель­
ные и полные.

Теорема 2. Для того чтобы последовательность {Фп(Н}} 
п = 1, 2, ..., вполне аддитивных функций множества, заданных на 
теле К и продолжимых на тело К*, сходилась на К* к некоторой 
функции Ф (И), необходимо и достаточно, чтобы она сходилась на 
системе множеств К$а.

Теорема 3. Пусть последовательность {ФДН)}, п = 1, 2, ... 
вполне аддитивных функций множества, заданных на теле К и 
продолжимых на тело К*, сходится на теле К. Тогда для сходи­
мости этой последовательности и на теле К* необходима и доста­
точна равностепенная непрерывность функций {ФДН}} на системе 
множеств

Теорема 4. Пусть на счетном теле К задано семейство вполне 
аддитивных функций множества {ФДН}}, продолжимых на тело К*.

* Ср. (5) и (6).
821



Тогда* для компактности семейства {Фа (//)} на теле К* необ­
ходимо и достаточно выполнение следующих условий: 1) функции 
семейства {Фа(//)} равномерно ограничены (на теле К); 2) функции 
семейства {Фа(//)} равностепенно непрерывны на системе мно­
жеств Кба-

2. Обозначим через Ck, k = 0, 1, 2, непрерывную спрямляемую 
жорданову кривую, заданную в трехмерном евклидовом пространстве 
уравнениями

х‘ — «р", (t), a^t^b, i = 1, 2, 3. (2)

Кратные точки кривой Ck будем считать различными. 1:1 отображе­
ние сегмента / = [а, Ь] на кривую Ck, порожденное уравнениями (2), 
обозначим через

(3)

Обозначим, далее, через P(?'k, Т), Т) и 1/(<р£, Т) (V=P— ^) 
положительную, отрицательную и полную вариации функции 
на линейных множествах Т^Р, через K*k(T)—замкнутое тело мно­
жеств, на котором определены эти вариации (для функций
i = 1, 2, 3); через К^(Т)— пересечение всех тел K*k{T), А = 0, 1, 2,...; 
образы тел Kk (Т) и Kt(T) при отображении (3) обозначим, соответствен­
но, через Kk (Q4) и /<* (Q*). Отображение (3) порождает 1: 1 отобра­
жение кривых Ck друг на друга по формуле qJe = [<pz (<?*)], при ко­
тором тела К*ы (Qk) и /С (Q;) подобно (с сохранением операций 
сложения, пересечения и вычитания множеств) отображаются друг на 
друга.

Пусть х’=ф! ($), / = 1, 2, 3, есть задание кривой Ck с
помощью длины дуги s. Тогда функция t = 9Г1 ^(s)] ^Z(s) будет 
давать 1:1 отображение сегмента [О, на сегмент I. При этом 
отображении тела К'ЛТ) и Kk* (5), где K*k* (5) есть тело измеримых по 
Лебегу множеств сегмента [О, L^, подобно отображаются друг на 
друга. Кроме того, если Т = t (S), S € K*k (S), то

рwk, т)=р(44 S), (44 S),

5), Ф(^, 7) = Ф(44 S),

где Ф = P + К-
Меру Лебега Lk(S) множеств S £ Kk (S) будем называть функцией 

длины кривой Ck. Функцию Lk (S) с помощью отображений qk = (5)
и t = t(S) можно перенести на тела K*k (Q*) и Kk(T\ Эти функции 
будем обозначать через Aa(Qa), Lk(T) и сохраним за ними название 
функции длины кривой Ck.

3. В дальнейшем мы предполагаем, что равномерно от­
носительно t € I, i — 1, 2, 3.

Рассмотрим следующие определения:
I. Кривые Ck сходятся к кривой Со по длине (V4), Ck->C0(L), 

если Lk->L0.
II. Кривые Ck сходятся к кривой Со по вариациям (V4), Ck->C0(V), 

если К(<р4 Z)-»K(q4 Z), г = 1, 2, 3.

* Ср. (5) и (8).
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III. Кривые Ck сходятся к кривой Со по длине относительно тела 
множеств К^Кш, Ck->C0(L, К), если для любого множества Т^К 
Lk(T)^L0(T).

IV. Кривые Ck сходятся к кривой Со по вариациям относительно 
тела множеств К~К'„, Ck->CQ(V, К), если для любого множества 

Т'НИ'Р'о- П=1,  2, 3.*

* Через ® мы обозначаем тело В-измеримых множеств сегмента I.

Аналогично определениям II и IV можно определить сходимости 
по положительным и отрицательным вариациям: Пр, 1^ и т. д.

4. Известно, что I-» П, но, вообще говоря, II—/->1; кроме того, ясно, 
что III ->1 и IV-» II. Следующий пример показывает, что, вообще го­
воря, I—/-»Ш.

Пусть т] — произвольное число, Пусть, далее,
ОО

У = 2 > °.
П=1

*1і>*І2  = *)з>*І4  = --- = ^7 >^8 = • - • = *1 і5>---

На сегменте J = [0, 1] выберем интервалы {8*},  k=\, 2,..., длины т)к 
следующим образом: интервал 8° = (аь Ь^ лежит на сегменте У на 
равном расстоянии от его концов; интервалы 82 и 83 лежат, соот­
ветственно, на сегментах [0, а}] и [Ьь 1] на равном расстоянии от 
их концов, и т. д.

Зафиксируем число п. Обозначим через Nn число интервалов 
8*,  Тогда число сегментов Д”, дополняющих эти интервалы
до сегмента J, будет равно ^+1. •

Пусть {8Z}, k = 1, 2, .... есть последовательность интервалов, 
удовлетворяющих условиям: 1) интервалы {8^} расположены на сег­
менте J подобно интервалам {8*};  2) при 8*  = 8*;  3) сумма
длин интервалов 8*,  приходящихся на каждый сегмент Д”, равна 

Подобная конструкция может быть выполнена.
Интервалы {8"} при фиксированном п позволяют установить по­

добное отображение сегмента J на самого себя так, что при этом по­
добии интервалы 8*  и 8*  линейно отображаются друг на друга. 
Обозначим это отображение через xi t6J, п — 1, 2, ..., и по­
ложим, кроме того, Хп=1/п, x^ = t, Хо = 0. Мы получим параметри­
ческое представление плоских кривых Сп, п = 0, 1, 2, ... Легко 
видеть, что СП-»СО(£). Однако на множестве Т, состоящем из ин- 

2п-1

тервалов 8*,  k — 1, 2, ..., Ln (Т) = *1  + Sn->2rj, Sn— 'Ьь тогда как 
*=1

Теорема 5. Для замкнутого тела множеств К", 35 с Д*  ДК*, , 

IV-»(IVP, IVjvHIV*.

Теорема 6. Для сходимости Ck->C0(L, необ­
ходимо и достаточно, чтобы-. 1) Cft-»C0(£); 2) функции Lk(T), 
k=\, 2, ..., были равностепенно непрерывны на классе где К° 
обозначает тело множеств, являющихся суммами конечного числа 
интервалов сегмента I, понимаемых в широком смысле.

Аналогичные предложения справедливы относительно сходимостей 
по положительным, отрицательным и полным вариациям.
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5. Пусть на кривой С, заданной уравнениями х* = (б), a-^t-^b, 
г = 1, 2, 3, определена функция точки f(q), измеримая К* (Q). Под 
криволинейным интегралом Лебега 1-го типа от функции f^q) по 
множеству Q€K’(Q) кривой С ^f(q)ds понимается интеграл Лебе- 

Q
га — Стильтьеса f (q) L (dQ), где L (Q) есть функция длины кривой С. 

Q
Под криволинейным интегралом Лебега 2-го типа от функции f(q) по 
множеству Q€K* (Q) кривой С относительно переменной х' ^f(q)dx* 

Q
понимается интеграл Лебега — Стильтьеса \ f (q) Ф'(dQ), где O’(Q) = 

Q
= Ф(<р\ Q).

Легко видеть, что если существует криволинейный интеграл 
Лебега 1-го типа от функции f(q) при кривой С, то существуют и 
все криволинейные интегралы Лебега 2-го типа от функции f (q) по 
кривой С и наоборот.

Теорема 7. Пусть Ck-»Со(A, Kt). Пусть, далее, функции 
точки fk, заданные соответственно на кривых Сk, k=\, 2,..., изме­
римы Kt имеют криволинейные интегралы Лебега \-го типа 
соответственно по кривым Ck и почти всюду относительно Lo 
сходятся к конечной функции f0, заданной на кривой Со. Тогда, 
если интегралы fkds, k = 1, 2,..., равностепенно абсолютно 

Qk
непрерывны (т. е., если для любого числа т) > 0 существует такое 
число 8>0, что как только для некоторого множества Q*€/OQ*), 
Lk (Q*) < 3, так модуль указанного интеграла меньше ?]), то функция 
fo Kt ^Уизмерима, обладает криволинейными интегралами Лебега 
1-2о и 2-го типов и для любой сходящейся последовательности 
множеств {Tk} lim Tk = Tg, Tk£Kt(T\ справедливы соотношения: k-^co

lim \ fkds— \ fods, (4)

lim fkdxi= fgdx*, (5)
*”*°° =₽* i7"*) Ф» (A)

где q>k (Tk) есть образ множества Tk при отображении (3).
В случае, когда все функции абсолютно непрерывны, фор­

мулы (4) и (5) справедливы, в частности, для всякого измеримого 
по Лебегу множества Т сегмента I.
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