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О НЕПРЕРЫВНОСТИ НЕКОТОРЫХ ОПЕРАТОРОВ 
СПЕЦИАЛЬНОГО ВИДА

(Представлено академиком С. Л, Соболевым 12 V1950)

Пусть f (и, х) есть действительная функция, определенная для всех 
действительных и и всех хЕВ, где В есть измеримое множество 
евклидова пространства п измерений. Будем предполагать, что / (и, х) 
непрерывна по и при каждом фиксированном х ^В и измерима в В 
по х при каждом фиксированном и.

В этом случае можно показать, что если v(x) измерима в В, то 
f(v(x}, х) также измерима в В.

Рассмотрим оператор hu = f (и (х), х), который отображает некоторые 
элементы u€Lp в элементы Аи€Тл(р>1; Оператор hu назы­
вается непрерывным в точке V, если, какова бы ни была последова­
тельность иь и2, и3,..., сходящаяся к v последовательность пи^ hu2, 
hu3,... сходится к hv, т. е., из Ц® — ит||->0 при т->оо следует, что 
\\hv — hum\\-+0, где

/? \11р V111||u||=h|n(x)^^ , ЦМ- ■
'в ' в '

Это определение эквивалентно следующему, Оператор Аи непре­
рывен в точке V, если, каково бы ни было е>0, можно указать та­
кое 8>0, что из неравенства || и — ‘иЦ <8 следует Ц hu — hv , < s. 
Оператор hu называется непрерывным в Lp, если он непрерывен в каж­
дой точке Ьр.

Для дальнейшего введем обозначения
/С ^,р /С \llPl||и||в = , ||Аи||д = Н|Аи|л</х1 ,

где Е есть измеримое подмножество множества В.
Теорема 1. Для того чтобы из сходимости в Lp ит 

к и0(т== 0, 1,2,.. ■) вытекала сходимость в LP1 hum к hu0, необхо­
димо и достаточно, чтобы каждому г>0 отвечало такое /] '> , 
что для любого множества Е с В, для которого mesr<Tq, и всех т 
имело бы место неравенство |[ hum ||в < е.

Необходимость. Пусть при т-»оо из ||ит — и0||-^и следует, 
что \\hum — huo\\^O-, тогда каждому г>0 отвечает такое (s), что
для всех т^т^ будет || hum — Ан0]| О/ 2. Отсюда || hum || || Аи0|| +
А- Ушт — А«0|1<Ин0|Ц- е/2. Так же найдем, что для всякого изме­
римого Е g В будет i| АйтЦв'С! Аи0||в + £/2. Далее, так как при вся- 

253 



ком т hum^Lp, то заданному е^>0 отвечает такое 8m>0, что при 
выполнении условия тезЛ<^т будет || hum ||л < г / 2. Полагая 
7) = min(80, 81; . .., мы найдем, что для всех т /щ„, лО, как 
только тезД^тр

S

Достаточность. Из условия теоремы вытекает, что для всякого 
m hum^LPi, ибо В можно разбить на N частей так, чтобы мера каж­
дой части была меньше т), и тогда мы будем иметь || hum ||л < sN. 
Далее, как показал В. В. Немыцкий (^, каковы бы ни были е>0 и ^>0, 
найдется такое 8 > 0, что при | ит (х) — и0 (х) | < 8 будет / hum — hu0 
на множестве Еа В, где mes (В — Е) < 72 у. Но, по условию, || ит — и0 
при т~><зо, поэтому найдется такое тх (е, ?}), что при т^т^ \ит(х)~ 

Для х€ Дтс Д где mes (Z?— Ет) Отсюда вытекает, 
что mes (В - ЕЕт) < ибо В = (В - В) + (В - Ет) + ЕЕт = Fm + ЕЕт, 
притом | hum — hu01 <е на ЕЕт. Следовательно, \\hum — hu0^ = 
= II + I! hum — Аи0 ■< ел mes В + 2-Р*еД ибо из усло­
вия теоремы следует, что \\hum — Ьи0^т<\\1Шт\\рт + рп0Ж<2£- 
Отсюда ||A«m —A«0||<s(mesB + 2^)I/A а значит, в силу произволь­
ности г, ||А«т — /ш0||->0 при т-»оо. Теорема доказана.

Следствие. Из этой теоремы вытекает, что для непрерывности 
hit в точке w0 необходимо и достаточно, чтобы условие теоремы вы­
полнялось для любой последовательности, сходящейся к и0; при этом, 
как легко видеть, найдется общее для всех последовательностей по­
ложительное 7].

Теорема 2. Для того чтобы оператор hit был непрерывен в Lp, 
достаточно, чтобы |/(«, х)|<а(х) + й|п|^л для всех и, х^В, где 
а (х) €Аа, b = const.

Данная теорема непосредственно вытекает из теоремы 1.
Теорема 3. Для непрерывности в Lp оператора 1ш достаточна 

его компактность, т. е., чтобы оператор hu отображал всякое 
ограниченное множество из Lp в компактное множество простран­
ства LP1.

Доказательство. Пусть v есть произвольный элемент простран­
ства Lp, а и1( и2, и3,... — какая-нибудь последовательность, сходящаяся 
к щ Так как {«*} ограничена, то, согласно условию, {huk} компактна. 
Из компактности {huk} следует существование фундаментальной по­
следовательности {hunk}. Значит, каждому г > 0 отвечает такое £0, что 
для всякого г || hunp^ — hunk^ < s / 2. Отсюда для всякого измеримо­
го Еа В будет || hunkt+r — hu>nk> ||F < г J 2. Но так как hunk£Lp„ то можно 
указать такое щ>-0, что || hun^ < г / 2 как только теэГ^тщ Отсю­
да и из предыдущего имеем || hunka+r ||f< ъ- Далее, из компактности hu 
вытекает, что hv(-LPi, а значит, найдется такое '<2Д>0, что || hv ||г -< г, 
как только mes Д<т;2. Полагая теперь 7) = min {тщ ?)2}, получим ||A'i»||F<e 
и ||h.Unk^r||f<е, как только mesF<vp Отсюда, согласно теореме 1, 
вытекает, что ||hv — hunk^Q при &->оо. Так же найдем, что всякая 
другая фундаментальная последовательность из {huk} сходится к hv.

Допустим теперь, что hiik не сходится к hv. Рассмотрим тогда схо­
дящуюся к нулю убывающую последовательность чисел а1; а2, а3,... Со­
гласно допущению, каково бы ни было s>0, найдется umk (k = 1, 2, 3,...) 
такое, что || v — umk ||.< но l| hv — hum^ ^е. В силу компактности hu 
последовательность {humk} содержит фундаментальную подпоследо­
вательность, которая, по доказанному, должна сходиться к hv, что, 
однако, невозможно в силу неравенства ||hv — humk || > е. Полученное 
противоречие доказывает, что huk сходится к hv. Теорема доказана.

Замечание. Заметим, что доказанные здесь теоремы сохраняются 
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fr> ьас

для оператора Ли = (Ах», h2u,..., hmu), где hi и—ft (щ, u2,..., um, x), 
„ = («,,«„ • .., um^Lp,m-, huQLP1,m; f 1(1^,..., um, x) непрерывны no 
(u «„..., «m) и измеримы в В по %. В качестве одного из приложе­
ний доказанных теорем мы приведем следующее предложение.

Теорема. Если выполнены условия:
1) функции ft (и^ щ,..., ит, х) непрерывны по (иь и2,..., ит) и из­

меримы в В т х, притом

\fi (и^ и2, ■.., ит, х) | <С а, (х) + 2 ^ir IUr і^-1 =J> 2, • • • > т\ 
r=l

где at (x)U„ j + у = h bir = const;

I Ki (x, y) 1^ dx dy = Mp <00 (Z = 1, 2,..., m\
BB

где Ki (x, у) — действительные функции, измеряемые в топологическом 
произведении БхВ-,

3) либо р<% либо р = 2 и 2 ^М1Ь1<Х< либ° Р>2 и
1=1 Г=1

. т \4р т т \ЧР / С \ Р?
( V -г І MPbPr\ <1, где |Н!?= ,

то система нелинейных интегральных уравнений

in (х) = \кі (х, у) fl fa (у), и2(у),..., ит (у), у) dy (г = 1, 2,, т) 
в

имеет по меньшей мере одно решение, принадлежащее простран­
ству Lpt т * .

Из этой теоремы вытекает, что если Kt (х, у) суммируемы в любой 
степени, то ft могут расти по щ как любые многочлены от щ, если 
только коэффициенты этих многочленов удовлетворяют некоторым 
неравенствам.

Действительно, если Р(и) = а (х) + 2 akUk(ak = const),то |Р(н) К
Й=1

т я*
О а (х) + b | и \т, где b = 2 I а* |> а (х) = I а W I + 2 'а* I' Аналогичные 

k=l Л=1
оценки получаются для многочленов от аргументов и2,..., иГ).

Поступило 
5 V 1950
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