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МАТЕМАТИЧЕСКАЯ ФИЗИКА

Г. И. БАРЕНБЛАТТ

ОБ ОДНОМ МЕТОДЕ РЕШЕНИЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

(П редставлено академиком С. Н. Бернштейном 4IV1P50)

Рассмотрим уравнение
у" + X? (х) = 0, (1)

где q(x) удовлетворяет условиям: Г) q(x)^0, q (х) может быть равно 
нулю лишь при х = 0; 2) q^x) имеет непрерывную вторую производ­
ную везде, кроме, быть может, точки х = 0; 3) вблизи начала коор­
динат q(x) = aox’n [1 + /?(х)], /?(%)-> 0 при х-^0, /п>0. •

Пусть у = (х; X) — интеграл уравнения (1), удовлетворяющий 
условиям: 9 (0, X) == sin a, 9^ (0,Х) = — cos a (ос = const, tga^O). Пусть ОО
далее f (х) непрерывна и такова, что существует интеграл f f2q dx. 

о
Тогда можно показать, что существует монотонная, неубывающая 

функция р(Х), не зависящая от /(х), и функция F (X) =
= l.i.m. J /(х)9(%, ^q^dx так, что J f2 (х) q (х) dx — f F2 (X) dp (X). 

л->оо 0 0 0
co

Отсюда легко получить, что если f F(X)9(x, Х)с/р (X) сходится абсо- 
о

лютно и равномерно, то
ОО

/(%)= ^(Х)<р(х,Х)с/р(Х). (2)
о

Б. М. Левитан (J) 
разложений, который

указал новый метод изучения рассматриваемых 
состоит в том, что вводится второй конец х = b 

и изучаются пределы соответствующих разложений на конечном про­
межутке (0, 6) при b -> оо. Пользуясь этим методом, укажем признак 

1 d2непрерывности спектра оператора и одновременно дадим спо­
соб построения р (X) для этого случая. Предварительно дадим асимп­
тотические выражения для решений уравнения (1).

Пусть при х = 8 (8 — малое положительное число) у = 9 (8, X) = уь 

У = х) = Уг Полагая £ = /X j y~qdx, т) = x'V^x) у, преобра- 
8 

зуем уравнение (1) в уравнение

Ф' + т] = Я (х) фл 'q 'Іг, (3)

где R (х) Уq [q" (4q2) 1 — 5q'2(16q3) *]. Решением уравнения (3), удов­
летворяющим при х = 3, т. е. Е = 0, условиям = K/>q1l>(<8)y1 
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d^/^ = т)'=1/4Х ^q "‘'^q'^y^^'q 71 (S)X> будет t](x)=7]1cos^(x)+ 
1/ x+ v)J sin £ (x) + X '* {/?(£) 7) (^) sin [£(%) — £(£)] Л. Титчмарш показал (2), 

8
что если q' (x) = О {[^ (x)]0}, 0<c<3/2, не меняет знака, то 
f I R(x) I dx существует и т](х) ограничена равномерно по X при 
8
Х>р>0. Т. е., если q (х) удовлетворяет этим условиям, то интеграл
ОО
f R (t) у; (t) sin [? (х) — £ (f)] dt сходится, и мы получаем искомые асимп- 

тотические выражения: у(х) = Х-/'^- /‘(x){p(X)cos^(x)+v(X)sin5(x)+o(l)}> 
от со

р = т)х + X-1/* J R q Л у sin 5 (0 dt, v= + Х~ /• f R q ,ly cos (£) dt. 
6 0

Теорема 1. Если q(x) удовлетворяет условиям 1) —3), q’ (x) =

= O{[^(x)]e), 0<c<3/2, q” не меняет знака и J Уqdxрасходится,
1 rf2 то спектр оператора непрерывен для Х^>0.

Наметим вкратце доказательство этой теоремы. Рассматривая врон­
скиан двух линейно независимых решений уравнения (1), легко пока­
зать, что р и v не могут одновременно обратиться в нуль. Введем 
второй конец х = Ь и на нем условие у (b) cos р + у' (b) sin р = 0. 
При Ь—>оо это условие запишется в виде

p1cos^(Z>) + v1sin^(6) = o(l), (4)

где = р cos р — р sin р [4^ (&)Г1 + x'V^hsin ft vx = v cos p — 
- v sin p [4^ (b)]-1 — psinp. Очевидно, что одновременное обра­

щение в нуль рх и vx влечет за собой одновременное обращение в нуль 
р и v и потому невозможно. Полагая Рі(ці + vi)-Л = sin “ (H 
vx(pi + = cos <o (X), запишем условие (4)^в виде

sin = о(1). (5)

Если ХА и Хй_х — последовательные корни уравнения (5), то 
_ ь _ ____  ь _

КхЛ f Vq dx + ы (X*) = о (1) + kn- Y(Vi) i Yq dx + (X*_x) = о (1) +

+ (k — 1) тс. Отсюда и из непрерывности ы(Х) следует, что

/x.-j/x^

Построим теперь р(Х). При

Рь + △) Рь (^) = 2 -^dx

J Y q dx
= 2 - х*-і)

( . 2Гх* ІI744* (Р-2 + v)
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В случае, если выполнены все условия теоремы 1, кроме расхо­
димости j Уq dx, спектр, очевидно, будет дискретным.

о
Рассмотрим теперь уравнение теплопроводности в турбулентно 

движущейся жидкости

±Гд(2)^1 =a(z)^. (6)
dz [ ' dz J v ’ dt ' '

Полагая dz IA (z) = dx, приведем (6) к виду

S = где W = (г)«(z).
Полагая, далее, ]/qdx = dy, приведем (7) к виду

(7)

(8)

— уравнению теплопередачи для „эквивалентного" стержня, темпера­
туропроводность которого равна единице. Ясно, что условие непре­
рывности спектра, данное нами в теореме 1, является условием беско­
нечности эквивалентного стержня.

Пусть q (х) удовлетворяет условиям теоремы 1. Решая уравнение (7) 
при условиях

7' (х, 0) = / (х), Т (0, t) cos а + (0, t) sin а Ч= 0, (9)

по методу Фурье получим, что Т = f е и М (А) <р (х, X) d\, где М (X) 
о

удовлетворяет интегральному уравнению

/(х)= J/W(X)9(x,X)rfX. (10)
О

Сравнивая (10) и (2) получаем М (X) = -У Л (X) (р2 + v2)-1. Искомым

решением уравнения (7) будет Т = f f е ф (л, X) ф (£, X) х
о о

x(p2 + v2) 1 d\, так как интеграл) е (р (х, X) <р (£, X) (р2 + v2) xd\ схо- 
о

дится абсолютно и равномерно. Легко видеть, что физический смысл 
“ -л/Ф (х, = f е <р (х, X) <р (^, X) (р2 + v2) 1 d\ — распространение со вре-
о

менем порции тепла, равной единице, из точки х = £ эквивалентного 
стержня, где она была сосредоточена в начальный момент, при усло­
вии (9) на конце стержня. Замечая это, получим решения уравнения (7), 
удовлетворяющие условию

Т(х, 0) = 0 (11)
и одному из условий

7(0, 0 = 9 (0, (12)
dT(0,t)/dx = — f(t\ (13)

Продолжим эквивалентный стержень симметрично на отрицатель-
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ную полуось. В случае симметричного относительно начала координат 
начального распределения тепла надо выбирать <р = <рх (х, X) так, что 
Ф (О, X) = 1, «Pi v (О, X) = 0; в случае антисимметричного — так, чтобы 
Ф2(0, х) = 0; ср^ (0, X) = 1. Возьмем симметричное начальное распреде­
ление, отвечающее начальному сосредоточению в окрестности начала 
координат порции тепла, равной 2 единицам: f (£) = 0, ] | > h\ 
/(^) = (а0А/я+1)-1, |£КЛ. Устремляя h к нулю, получим „первое 

основное решение" Т\ = X) (Л + Отсюда видно,

что решением уравнения (7) при условиях (И) и (13) будет: 
t со

Т = ф (т) t/т е~^~т)ср (х, X) + ^"’t/X.
о о

Вполне аналогично получим второе основное решение, отвечающее 
помещению в начале координат теплового диполя мощностью в 2 еди­
ницы: Т} = — - | е~и<рЛх, X) (р.2 + v^’t/X.

~ о
Итак, решением уравнения (7) при условиях (И) и (12) будет:

t со

Т = <Р (т) t/т (х, X) (р2 + V^t/X.
о о

Пример. Пусть q(x)~xm, тогда соответствующие решения суть:
t со

Г.“[г(^))Г(/Н<Нехр|- х
L “Г *7/ J j J

0 0

X VxJ 1 _m+2 
«+2

1 . 1_
(rn + 2)m+2xm 2 t/X =

t _ m-H , „
= -У“+“ехр ------ 1

о (m + 2)m+-
m-\-\ t . co

T2 = x (zn + 2) [Г M x exp [-Xm+2 (/ - t) ] x
6 о

t „ m+3
r P Г Vm-b2 ------- Гл 17/ 1 > ? exp [ “ (M + 2)2 (/ - T) ] — ZU

r Vr+2 J s’ (m + 2)m+2

В частности, при m = 0 получаем известные решения уравнения 
теплопроводности.

В заключение работы приношу искреннюю благодарность 
проф. Б. М. Левитану и проф. Л. И. Седову.
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