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ОБ ОДНОМ ПРЕДСТАВЛЕНИИ ЦЕЛОЙ АНАЛИТИЧЕСКОЙ 

ФУНКЦИИ ПЕРВОГО ПОРЯДКА НОРМАЛЬНОГО ТИПА

(Представлено академиком И. Г. Петровским 31 III 1950)

1. А. О. Гельфондом (Д подробно исследована проблема представле­
ния целой функции F (z) первого порядка нормального типа, когда заданы 
некоторые функционалы, связанные с коэффициентами разложения Тей­
лора целой функции. Им получено представление целой функции F (z) 
в виде ряда, расположенного по полиномам, равномерно сходящегося во 
всякой ограниченной замкнутой области плоскости z, при ограничениях 
на рост F (г), необходимых для единственности целой функции. Коэф­
фициенты этого разложения апроксимируются через интерполяционные 
данные с любой степенью точности.

В настоящей статье дается новое представление целой функции 
F (z) с помощью одной вспомогательной функции, определяемой не­
посредственно через интерполяционные данные. Функция F (z) представ­
ляется посредством вспомогательной функции в виде некоторого 
интеграла, из которого легко получается, например, представление 
функции рядом Ньютона, рядом Абеля и др.

2. Пусть функция F (z) — целая первого порядка нормального типа, а 
/(z) — функция, ассоциированная с F (z) по Борелю. Допустим, далее, 
что заданы функционалы:

24 $ Iй (п = 0, 1, 2,...), (1)

cz

где u(Q, п(0) = 0, и! (0) = 1, — регулярная функция в конечной или 
бесконечной односвязной области D'^, однолистная в области D^, со­
держащейся в Di, а замкнутый контур С- лежит внутри D^ и содер­
жит внутри себя все особые точки /(Q. Отображение области D^ и 
кривой в плоскости и обозначим, соответственно, через Du и Си. 
С помощью чисел Ап образуем функцию Ф(£) посредством ряда:

°° Ап 
ф(0 = 27-

Л=0

Этот ряд при 1t1 достаточно больших будет сходиться. Действительно, 
обозначая через d наибольшее расстояние точек кривой Си от начала, 
из (1) будем иметь оценку:

\An\<Md” (п = 0,1, 2,...), (3)
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где М — постоянное. Поэтому при j t1 > d ряд (2) действительно схо­
дится. Следовательно, функция Ф(£) будет регулярной в бесконеч­
ности. Для пользуясь (1), функцию Ф(^) можно представить
интегралом:

1 С 1
= (4)

с£ 1 ~ t

Из этого представления и однолистности функции и (Q внутри кривой 
следует, что функция Ф (t) будет регулярной, во всяком случае, 

для любого значения t, лежащего вне кривой Си.
Таким образом, имеем теорему:
Теорема 1. Пусть функция Р (z) — целая первого порядка нор­

мального типа, a f(z)— функция, ассоциированная с F (z) по Бо­
релю.

Тогда функция Ф (t), определяемая рядом:

А
(5)

n=Q

где
\ К (« = 0,1, 2,...), (6)

причем и и (0) = 0, и' (0) = 1,—регулярная функция в конечной 
или бесконечной односвязной области D'^ и однолистная в содер­
жащейся в D^, замкнутый контур лежит внутри и содержит 
внутри себя все особые точки f(t), будет регулярной, во всяком 
случае, для любого t, лежащего вне кривой Си, в которую преобра­
зуется посредством и — и(^).

^3. Функция Ф^) дает возможность дать новое представление функ­
ции Р (z).

Теорема 2. В условиях теоремы 1 имеет место представление:

4 С ц/ (тЛ 4 Р р^ («)Д (?) = ^ \ Ф [и (tHl —гт ezv dv = \ Ф (и)------- du, (7)
' > 2ni J L v 'J «(Щ 2nz J v ’ и ’ ' ’

cC cu

zde v (u) — функция, обратная функции и— u(v).
Доказательство. Для доказательства рассмотрим контуры С^, 

С г, СД лежащие в области Dr, и такие, что особые точки /(Q содер­
жатся внутри С^, охватывает С^, а С" охватывает Сг> Образы кри­
вых С', Сг,, в плоскости и обозначим, соответственно, через С', Си, 
С"и. Пусть t — точка кривой Си, в которую преобразуется точка v кри­
вой Сг,. Рассмотрим теперь интеграл

С' t
(8)

Подинтегральная функция имеет особенности внутри контура С' и в 
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точке £ = v — простой полюс. Поэтому, по теореме Коши, будем иметь;

О)

С? t

или, в силу (4), получаем:

Из (8) и (10) получаем:

cr. *

Полагая t = u(ru\ из (11) находим:

f (v) = Ф [и (<р)] 44- — Л Ж (12)
' ' L v 11 и (v) 2nz J U (v) — U (Q J '

c"c
Интеграл в правой части равенства (12) определяет функцию, анали­
тическую внутри и на контуре С^.

Умножая (12) на ezv и интегрируя по контуру С^, получим 
।

Л (х) = Ф Iм (^)] U 4'е™ do.v ' 2?w J 1 ' и (v)

Таким образом, теорема доказана.
Непосредственным следствием этой теоремы являются теорема 

единственности и теорема, связанная с разложением функции Л (х) в 
обычные интерполяционные ряды, установленные А. О. Гельфондом 
О-

Теорема 3. Если при выполнении всех условий теоремы 1 Ап = 0 
(п = 0,1, 2,...), то F(z) = 0.

Теорема 4. Пусть выполнены все условия теоремы 1 и, кроме 
того, функция a(Q отображает область Dr на круг | и | р'.

Тогда для функции F (г) имеет место разложение

F^ = ^AnPn(z\ (13)

Рм = 1ЛІ
n{ dX? ( [« (Q]"+1

1
п\

dn
—ezv (“) du.n и=0

(14)

где v (и) — функция, обратная функции и = и (у).
4. Пользуясь теоремой 4, докажем теорему:
Теорема 5. Пусть выполнены все условия теоремы 4 и, кроме 

того, р' < 1, а числа Ап (п = 0,1, 2,...) — целые (или, по крайней мере, 
целые, начиная с некоторого номера n^Ng).

Тогда функция F (х) является многочленом.
Доказательство. В условиях теоремы функция Ф(^) будет ре­

гулярна в области |^|^>1. Следовательно, ряд (2) будет сходиться при 
некоторых t, 111 < 1. Поэтому lim Ап — 0. Но так как Ап — числа це- П—> оо
лые, то будем иметь

А„ = 0, п>и0. (15)
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С другой стороны, по теореме 4 функция F (z) представляется ря­
дом (13). Из (13), (15) следует утверждение теоремы.

Как частные случаи этой теоремы получим различные обобщенные 
теоремы Полна.

Пусть функция и (£) имеет вид:

и(Р = ^—1. (16)

Эта функция отображает область

|^-11<1, — тс</іші;О (17)

на круг |и|<1. Поэтому будем иметь известную теорему:
Теорема 6. Пусть F (z) — целая функция первого порядка нор­

мального типа, ассоциированная которой имеет все свои особенно­
сти внутрь области, определяемой неравенством (17), а числа F (п) 
(п = 0,1, 2,...) целые.

Тогда Р (г) есть полином.
Действительно, в условиях теоремы Ап = Д'г F (0) и будет справед­

ливо (15). Поэтому F (z) будет полиномом.
Точно так же получим теорему:
Теорема 7. Пусть функция F (z) — целая первого порядка нор­

мального типа и числа F^ (п) (п — 0, 1, 2,...) целые.
Тогда, если f(z)— функция, ассоциированная с F (z) по Борелю, 

имеет все свои особенности внутри одласти

IW<4> (18)

то F (z) есть многочлен.
Таким же образом можно получить ряд других аналогичных теорем.
В заключение отметим, что из представления целой функции пер­

вого порядка нормального типа формулой (7) легко получается разло­
жение ее в ряд по полиномам и необходимые и достаточные условия, 
чтобы функция F (г) была квази-полиномом.
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