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ПОВЕРХНОСТИ, ПРЕДСТАВИМЫЕ РАЗНОСТЯМИ 
ВЫПУКЛЫХ ФУНКЦИЙ

1. Под поверхностью, представимой разностью выпуклых функ­
ций,— коротко, „поверхностью ПРВ“—понимается поверхность, кото­
рую можно задать в декартовых координатах уравнением z — f (х, у) 
с правой частью, являющейся разностью выпуклых функций, или, 
более обще,— поверхность, допускающая покрытие такими поверх­
ностями.

Класс поверхностей ПРВ достаточно обширен; он содержит все 
выпуклые поверхности, все дважды непрерывно дифференцируемые 
поверхности, а также многогранники, у которых окрестности вершин 
однозначно проектируются на какие-либо плоскости.

Нас интересует, во-первых, внутренняя геометрия поверхностей 
ПРВ и, во-вторых, ее связь с их „внешней" геометрией, т. е. со свой­
ствами поверхности как фигуры в пространстве. В этом втором вопросе 
мы получаем результаты, охватывающие то основное, что известно для 
общих выпуклых поверхностей (\ 3).

Основной результат в первом вопросе сводится к тому, что, с точки 
зрения внутренней геометрии, всякая поверхность ПРВ есть „много­
образие с ограниченной кривизной" в том смысле, как оно было 
определено в (2). Это означает, что на всякой поверхности ПРВ суммы 
абсолютных величин избытков неперекрывающихся геодезических 
треугольников ограничены (понимая под избытком сумму углов 
минус к).

Основные понятия внутренней геометрии, как кратчайшая (геодези­
ческая), длина, угол, площадь, кривизна, направление и поворот 
кривой, можно понимать так, как они определены в (J) для вы­
пуклых поверхностей, за исключением понятия о кривизне. Теперь, 
в отличие от частного случая выпуклых поверхностей, мы сталкиваемся 
со знакопеременной кривизной, что требует нового ее определения; 
оно было дано в (2) и состоит в следующем.

Положительной (отрицательной) частью кривизны открытого множе­
ства Она поверхности — в обозначениях ы+ (О) (оГ(О)) — мы называем 
точную верхнюю границу (нижнюю границу с обратным знаком) сумм 
избытков неперекрывающихся треугольников, заключенных в О. Для 
любого М определяем w+(Al) = inf <о+(О) и аналогично для оЩ Кривиз-

GZD ж
на множества М определяется как w (/И) = ы+ (Af) — w_ (М), величина же 
□ (М) = <о+(Д4) -р ы“(А1) называется абсолютной кривизной. Для регуляр­
ной поверхности ы и Q суть интегралы по площади, соответственно, 
гауссовой кривизны и ее модуля.
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2. Исходным пунктом дальнейших выводов является следующая 
теорема.

Теорема 1. Пусть поверхность ПРВ представлена в декарто­
вых координатах уравнением z = g(x, y) — h.(x, у), где g и h — 
выпуклые функции. Пусть gn, hn (п = 1, 2,.. ^ — аналитические вы­
пуклые функции, сходящиеся, соответственно, к g и h, а 
Fn (п — 1, 2,...) — поверхности, задаваемые уравнениями z = 
= gn(x,y) — hn(x,y).

Тогда имеют место два факта:
1) Абсолютные кривизны поверхностей Рп ограничены в сово­

купности.
2) Метрики поверхностей Fn сходятся к метрике поверхности 

F, т. е. если X, Y € F, Xw Yn € Fn и Хп -> X, Yn -> Y, то (Хп Yn) -> 
-> pF (XY), где р — внутреннее расстояние на поверхности в смысле 
обычного определения.

Из теоремы 1 вытекает, очевидно,
Теорема 2. Всякая поверхность ПРВ F допускает приближе­

ние регулярными поверхностями, абсолютные кривизны которых 
  ограничены в совокупности и метрики сходятся к метрике F.

В силу основной теоремы статьи (2), внутренняя метрика, являющаяся 
пределом метрик с кривизнами, ограниченными в совокупности, сама 
оказывается метрикой ограниченной кривизны. Поэтому из теоремы 
2 следует

Теорема 3. Всякая поверхность ПРВ в смысле ее внутренней 
метрики является многообразием ограниченной кривизны. Следова­
тельно, на ней: 1) между каждыми двумя исходящими из обіцей 
точки кратчайшими существует определенный угол и 2) суммы 
избытков неперекрывающихся треугольников ограничены.

Благодаря теореме 3 все выводы о многообразиях ограниченной 
кривизны (2, 4) могут быть перенесены на поверхности.

Заметим, что после установления теоремы 2 и 3 теорему 1 можно 
обобщить, сняв условие аналитичности функций gn, hy, они могут 
быть любыми выпуклыми и оба утверждения теоремы 1 останутся при 
этом в силе.

3. Т е о р е м а 4. Для того чтобы кривая на поверхности ПРВ имела 
в начальной точке определенное направление в смысле внутреннего 
определения (см. (4) или (4)), необходимо и достаточно, чтобы она 
имела в ней касательную (внутреннюю точку кривой всегда можно 
считать начальной для двух ее дуг). ,

Так как всякая кратчайшая (геодезическая) тривиальным образом 
имеет определенное направление в начальной точке и направления в 
обе стороны в любой внутренней точке, то из теоремы 4 следует

Теорема 5. На всякой поверхности ПРВ геодезическая имеет 
в каждой точке правую и левую касательные.

Для общих выпуклых поверхностей эта теорема была впервые в 
полном объеме доказана И. М. Либерманом (3) посредством изящного 
геометрического приема, который, однако, существенно основан на 
выпуклости поверхности. В нашем более общем случае мы совершенно 
иным путем получаем сразу теорему 4, используя сравнительно глубо­
кие внутренне-геометрические выводы. Таким образом, и для выпуклых 
поверхностей наше доказательство оказывается новым.

Теорема 6. Всякая поверхность ПРВ имеет в каждой точке 
касательный конус; этот конус является касательным к ней так­
же в смысле внутренней метрики.

Согласно определению, данному в (4), это означает следующее. 
Некоторая окрестность U точки А на поверхности F допускает такой 
гомеоморфизм h на окрестность вершины конуса К (касательного F в 
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точке Л), что: 1) h (А) есть вершина К и 2) при всяком г>0 суще­
ствует такое 8 > 0, что при р^ДЛХ) +

I Рл W ~ 9К (A W А (Г) | < г [pf (Л^) + рД Л Г)], 
где X, У — точки из U, а рр рл — расстояния на В и К.

Теорема 7. Угол (в смысле внутреннего определения Д)) между 
кривыми на поверхности ПРВ, исходящими из общей тонки А, 
равен углу между их касательными, измеренному на касательном 
конусе в тонке А.

4. Для перенесения на общие поверхности ПРВ теоремы Гаусса 
нужно определить для них „площадь сферического изображения". 
Самое сферическое изображение определяется просто лишь для глад­
ких поверхностей. В общем случае наличие ребер и конических точек 
усложняет дело.

Пусть поверхность В представлена уравнением z = f (х, у). Сфери­
ческое изображение будем строить на полусфере 5, лежащей в полу­
пространстве z>0, если центр сферы — в начале координат.

Пусть G — односвязная область на поверхности В, ограниченная 
простой замкнутой кривой L, не проходящей через конические точки 
(т. е. такие точки, где касательный конус не сводится ни к плоскости, 
ни к двугранному углу; таких точек на поверхности не более, чем 
счетное множество). Если в точке X кривой L имеется касательная 
плоскость, то ей естественно сопоставляется точка на полусфере 5 с 
параллельной касательной плоскостью. Если в точке X касательный 
конус представляет двугранный угол, то относим ей на полусфере 5 
дугу большого круга, соединяющую концы нормалей к граням этого 
двугранного угла. Таким образом, кривой L сопоставляется на 5 
некоторое множество точек L. Это множество при известных условиях 
представляет замкнутую кривую, т. е. непрерывный образ окружности. 
Если при этом кривая L имеет площадь (меру), равную нулю, то ей 
сопоставляется „площадь ограниченной его области" аналогично обще­
известному криволинейному интегралу. Без каких бы то ни было 
Предположений о множестве L эту „площадь" можно определить 
следующим образом.

Зададим обход кривой L. Берем на ней последовательные точки Xv 
Каждой точке Х{ отвечает точка или дуга из Ц во втором случае берем 
на такой дуге любую из ее точек. Таким образом, точкам Xt отвечают 
точки Хі из L. Пусть О какая-либо точка полусферы 5. Рассмотрим 
сферический треугольник О Х{ Хм. Если обход такого треугольника, 
определенный направлением стороны Х{ Xi+1, совпадает с данным об­
ходом кривой L (т. е. дает с осью z винт той же ориентации), то 
считаем его площадь положительной, а в противном случае — отрица­
тельной. Образуем сумму этих площадей со знаками. Если при без­
граничном сгущении точек на кривой L существует предел этих сумм, 
то принимаем его за „площадь сферического изображения" или „внеш­
нюю кривизну" области G, ограниченной кривой L.

Теорема 8. На всякой поверхности ПРВ площадь сферического 
изображения области равна ее кривизне (в том смысле, как она 
определена в п. 1).

Так как не всякая область имеет определенную площадь сфери­
ческого изображения (в смысле данного только что определения), то 
теорема 8 приобретает полное содержание в связи с леммой:

На всякой поверхности ПРВ для всякой односвязной области Go 
и заключенной в ней замкнутой области Gr существует содержа­
щаяся в Go и содержащая Gr область G, имеющая определенную 
„площадь сферического изображения".
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Вследствие этого, а также благодаря полной аддитивности кривизны 
можно определить „внешнюю кривизну" любой области G как предел 
„внешних кривизн" расширяющейся последовательности областей, 
содержащихся в G, дающих в сумме всю G и имеющих определенные 
площади сферического изображения. В результате можно высказать 
теорему.

Для всякой области на поверхности ПРВ внешняя кривизна 
равна внутренней.

5. В заключение отметим теорему о площади.
Теорема 9. Площадь области на поверхности ПРВ в смысле 

внутреннего определения через разбиения на треугольники, данного 
в (х) и (2), совпадает с площадью в обычном, смысле, т. е. выражается 
общеизвестным двойным интегралом К1 + ^ + 2у ^У-

Вопрос о внешнегеометрическом смысле поворота кривой остается 
невыясненным до конца даже для кривых на выпуклых поверх­
ностях.

Ленинградское отделение Поступило
Математического института 3 IV 1950
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