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Диффузное рассеяние рентгеновских лучей под малыми углами 
(©<Д—2°) свидетельствует о существовании в рассеивающем веще­
стве субмикроскопических областей неоднородности (флуктуаций 
электронной плотности), размеры которых значительно превосходят 
длину волны излучения. Новой задачей рентгеновского структурного 
анализа, возникшей в последние годы, является определение раз­
меров, формы и пространственного распределения таких областей 
(например, частиц или пор размером от 20 до 1000 А) по дифракцион­
ной картине, возникающей вблизи первичного пучка (1-3^.

Общая теория явления еще не разработана. Однако теоретические 
работы, ведущиеся в этом направлении, многочисленны ((4-9), более 
ранние работы указаны в библиографии к статье (2)) и с их помощью 
новый метод структурного анализа был уже неоднократно использо­
ван как для некоторых количественных расчетов, так и для чисто 
качественной характеристики дисперсности самых разнообразных ве­
ществ (912).

В случае твердого тела, состоящего из сферических частиц оди­
накового радиуса, интерпретация малоугловых рентгенограмм бази­
руется на теории рассеяния рентгеновских лучей газами и жидкостями.

Если расстояние между частицами больше размера самих частиц 
(„твердое тело газообразного типа"), то дифракционная картина пред­
ставляет собой размытое пятно, интенсивность которого монотонно 
убывает с возрастанием угла. Исходя из уравнений теории рассеяния 
газами, можно эту зависимость выразить следующей приближенной 
экспоненциальной формулой (10): 

— — —R = Nn*e в», (1)

где /, — интенсивность излучения, рассеянного под углом <р; N — чис­
ло рассеивающих частиц радиуса R-, п — число электронов в одной 
частице; X — длина волны.

Линейная зависимость между логарифмом интенсивности и квадратом 
угла рассеяния позволяет в этом случае вычислить радиус частицы по 
наклону а = —0,35-—/?2 этой прямой. Для лучей Си (X = 1,54 А)

R = 0,83 (2)

Если вещество представляет собой систему плотно упакованных 
частиц („твердое тело жидкостного типа"), то благодаря интерференции 
между волнами, рассеянными отдельными частицами, дифракционная 
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картина имеет вид размытого кольца, диаметр которого зависит от 
среднего расстояния между центрами соседних частиц, т. е. диаметра 
частицы. К этому и промежуточным случаям применяются обычно 
соответствующие уравнения теории рассеяния жидкостями и плотны­
ми газами (г). Чаще всего используется распространенная на случай 
субмикроскопических частиц формула Цернике и Принса:

Рис. 1. Рентгенограммы и микрофотометрические кривые образцов 
№№ 1-5

где k = 27z-~, и (г)— функция распределения частиц вокруг избранной 
начальной частицы, так что 4кг2и (г) dr — число частиц, находящихся 
между сферами с радиусами г и г + dr, и0 — среднее число частиц 
в единице объема. Фактор размера и формы частиц Ф(&/?) в случае 
сферических частиц определяется следующим образом:

Ф (^) = [sin (kR) — kR cos (Л/?)].

При малой плотности частиц интеграл в фигурных скобках стре­
мится к нулю и (3) совпадает с (1), где фактор Ф(&/?) заменен при­
ближенно экспоненциальной функцией.

Радиус частиц можно вычислить по положению первого интерфе­
ренционного максимума, для которого (7) 2к ~ R= 2,5, откуда (для 
лучей Ra Си)

R^^-. (4)

Применение более точных формул, учитывающих различие ча­
стиц по форме, размерам и ространственное распределение 
пока не привело к эффективным результатам.
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Ниже описана попытка применения „метода малых углов" к из­
учению субмикроскопического строения нескольких микропористых 
стекол, полученных путем обработки натриево-боро-силикатных стекол
ЗД/ раствором соляной кислоты.

Свойства таких стекол описаны И. В. Гребенщиковым и О. С. Мол­
чановой (13), сорбционные свойства — С. П. Ждановым (14). Рентгено­
графическое исследование обычным методом было проведено 
Е. А. Порай-Кошицем (15). Все исследованные нами образцы были 
обработаны и предоставлены нам О. С. Молчановой и С. П. Ждановым.

Применение к микропористым стеклам

Рентгенограммы 5 образцов микропористых стекол и их микро- 
фотометрические кривые даны на рис. 1. Светлая вертикальная по­
лоса в центре рентгенограмм является тенью свинцовой пластины —
ловушки первичного Пучка. Минималь­
ный угол рассеяния для всех рентгено­
грамм равен 10,5', максимальный (у стек­
ла № 1) 1°25'. Составы исходных стекол 
приведены в табл. 1; перед обработкой 
кислотой все они отжигались в течение 
12 часов при 530°.

Очевидно, что величина частиц и 
пор возрастает от образца № 1 к образ­
цу № 5, т. е. с уменьшением коли­
чества SiO2 в исходном стекле. На кри­
вых 1 и 2 виден первый интерференци­
онный максимум, характеризующий плот­
ность упаковки (взаимодействие частиц).

Графики зависимости 1g от <р2, или 
от г2 (г — расстояние от центра рентге­
нограммы в мм; вследствие малости уг­

Рис.'2. График зависимости лога­
рифма интенсивности от расстоя­
ния до центра рентгенограммы.

лов ОНО пропорционально <р) ДЛЯ всех позволяющий определить по на- 
стекол прямолинейны только при наи- кл°ну прямолинейной части наи- 

' т-r г меньшии радиус. Образец № 4больших углах. Продолжая прямолиней­
ный участок кривой до пересечения с
осью ординат (как это сделано на рис. 2 для образца № 4), можно 
определить по наклону прямой (формула (2)) — наименьший радиус
Площадь, расположенная выше этой прямой, связана с наличием частиц и 
пор большего радиуса. Изгиб кривой при наименьших углах указы­
вает на намечающееся образование интерференционного максимума. 
Конечно, понятие „сферической частицы" в отношении микропористо­
го стекла чрезвычайно условно и определенные таким образом ра­
диусы следует считать лишь грубым приближением, нуждающимся 
в дальнейшем уточнении. Все же, как видно из табл. 1, данные 
сорбционного исследования, проведенного С. П. Ждановым, находят­
ся в удовлетворительном согласии со значениями наименьшего ра­
диуса определенными рентгенографически.

На рис. 3 даны рентгенограммы и микрофотометрические кривые 
двух образцов микропористого стекла, полученных из одного и того 
же исходного стекла (7%Na2O, 23%В2О3, 70°/0SiO2), но закаленного от 
различных температур — от 700° и от 750°. Рентгенограмма и кривая 
первого образца (А) свидетельствует о его крупнопористом строении 
(радиус основных „каналов" порядка 300А), а рентгенограмма и кри­
вая второго образца (Б) — о значительно более дисперсном (радиус 
„каналов" порядка 100 А). Этот результат находится в полном согласии 
как с данными сорбционного исследования, так и с изменением неко­
торых физико-химических и оптических свойств стекла в этом тем-
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пературном интервале (например, с исчезновением сильной опалес­
ценции исходного стекла).

Интересно отметить, что во всех случаях интенсивность рассеяния
под малыми углами зависела от частоты пор

Таблица 1

№ 
образ­

ца

Состав исходного 
стекла в мол. % 

(по синтезу) Рентгенограф. 
определ. 
наименьш. 

радиуса 
в А

Радиусы пор в А 
по изотермам 

сорбции

Na,0 BaOs SiO, н,о с,н,он

1 5 20 75 27 19 18
2 6 24 70 51 45 49
3 4 26 70 60 50 47
4 5 30 65 88 60 53
5 7 28 65 100 74 58

тицу среды, то этот результат

или „каналов" микропори­
стых образцов, возра­
стая иногда почти в 
100 раз после химиче­
ской их „прочистки"; 
угловое распределение 
при этом почти не ме­
нялось. Так как, сог­
ласно теории, интенсив­
ность пропорциональна 
И(р—р0)2> где И—объем 
частицы, р — ее элек- 
тройная плотность, а 
р0 — электронная плот­
ность окружающей час-

вполне закономерен. Его количе-
ственная интерпретация также находится в удовлетворительном сог­
ласии с данными сорбционных исследований.

■Б -5 -4-3-2-10 / 2 3 4 5 6 мм

Рис. 3. Рентгенограммы и микрофотометрические кривые образцов, 
полученных из опалесцирующего (А) и прозрачного (5) стекол
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