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ТЕПЛОВОГО ИЗЛУЧЕНИЯ

(Представлено академиком А. Н. Колмогоровым 24 III 1950)

Введение. Теория теплового излучения (или макроскопическая 
(феноменологическая) кинетика излучения), изучающая неравновесные 
состояния излучающих систем, характеризующиеся произвольными 
■полями температур и оптических констант, подобно теоретической 
гидромеханике или классической механике твердого тела, является 
математической наукой. Фундаментальным базисом теории теплового 
излучения являются, наряду с ее аксиоматикой, интегральные урав­
нения излучения, связывающие соответствующее число задаваемых 
(определяющих) полей с определяемым полем плотности того или 
иного вида излучения. Вследствие этого интегральные уравнения 
излучения можно рассматривать как уравнения состояния неравновес­
ных излучающих систем.

Разнообразие математических методов, используемых в теории теп­
лового излучения (опирающихся на теорию меры множеств, функциональ­
ный анализ и уравнения математической физики, теорию вероятностей, 
теорию поля (векторный и тензорный анализ), интегральную и дифферен­
циальную геометрию, различного рода специальные функции и т. д.) 
обусловливается существом и характером ее проблем, неизмеримо 
более общих и сложных, чем чисто термодинамические, относящиеся 
к равновесным состояниям и процессам*, а также многообразием ее 
применений в различных областях техники и физики и, прежде всего, 
в теплотехнике, астрофизике, геофизике, светотехнике, гелиотехнике, 
физике моря, в которых задачи о лучистом обмене занимают выдаю­
щееся место.

Постановка задачи. Ниже приводится вывод некоторых основ­
ных дифференциальных и интегральных уравнений теплового излуче­
ния для случая неподвижной системы излучающих серых тел, 
разделенных диатермической средой. Излучающую систему полагаем 
замкнутой, ограниченной поверхностью тийа Ляпунова, имеющей 
произвольную заданную конфигурацию. Поля температур и оптических 
констант по поверхности системы принимаются непрерывными.

Дифференциальные уравнения. Наиболее детальным диф­
ференциальным уравнением теории теплового излучения, определяю­
щим законы распределения яркостей В(М, s, т) по направлениям, 
является уравнение переноса лучистой энергии (2), которое для диа­
термической среды и нестационарного поля излучения имеет вид:

DB (М, s, т) дВ (М, s, т) 1 дВ {М, s, т) „ /.,
ds ” ds + ~ дх — U’

■где с = dsjdx — скорость распространения лучистой энергии.

* Анализ подобных процессов см., например, (’).
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Интегрируя это уравнение почленно скалярно по телесному углу 
w = 4к, находим:

div Ен (М т) + =0, (2)

где Eta (-/И, т) — сферический вектор излучения, представляющий вектор­
ную функцию точки М и времени т. Его направление соответствует 
направлению наиболее интенсивного результативного переноса лучистой 
энергии:

Ete (/И, т)= J В(М, s, i)dZ(M, s); (3)
(4п)

и (М, т) объемная плотность лучистой энергии:

и (М, т) = — В(М, s, т) (М, s) (4)
; (М

и du (М, s) — элементарный вектор телесного угла (3): ’

du(M,s) = ~ = r1-T^- = r1-^-E-dFN = r1du(M,s\ (5) 
rMN rMN rMN

где rx — единичный вектор по направлению луча s; rMN — расстояние 
между точками М и N на луче s; dFn — векторный элемент поверх­
ности в точке N с направлением гх; 6^ — угол между направлением 
нормали к площадке dFN в граничной точке и направлением s.

В случае стационарного поля, очевидно, имеем:
dB(M,s) = dB{M,s) е

дт ds ’ ' '

jWlL^divEta^^O. (7)

Интегральные соотношения для стационарного и 
диатермического поля излучения. Учитывая, что в рас­
сматриваемом случае яркость излучения во внутренних точках поля 
является лишь функцией направления s и не зависит от точки и что 
для граничных серых тел, в силу закона Ламберта, яркость, наоборот, 
является лишь функцией точки на поверхности системы и не зависит 
от направления, получаем, как следствие этих двух законов, соотно­
шение: В (М, s) = Ba#(N) — E^(N)/n. Следовательно, имеем

Е4, (Ж) = ^- J Еаф GV) dZ(M, s) = s)> (8)
(4к) (4л)

-> 1 ->
где dtp (714, s) = ~ du (M, s) — элементарный геометрический вектор из­
лучения и Еэф = АЕ0 + REnad — плотность полусферического эффектив­
ного излучения (4).

Введем, далее, новое понятие полусферического вектора излуче­
ния Егя, который определим как векторный интеграл от яркости В (Д4, s) 
по телесному углу « = 2тс:

(М, п)= В(М, s)du(М, s), (9)
(2п)

ИЛИ
С -* С cos О», .Е2к(М, п) = E^(N)d(?{Ms)= E^^^-^-dF  ̂ (10)

(2п) F' (М, n) "rMN
Как явствует из (9) и (10), вектор Е2Л(М, п) является функцией 

точки М и направления нормали п к площадке dF^ в этой точке.
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Весьма важно отметить, что в то время как проекция сферического 
вектора Efe (АГ) на произвольное направление п, проходящее через 
данную точку М, представляет плотность результативного излучения, 
проходящего через площадку dFM, ориентированную нормально 
к направлению п:

Ереа (АГ, п) = (Efe, Еэф (^) dyn (М, N), (И)<
* ' (4")

проекция полусферического вектора Егп (М, п) на направление п, кото­
рым данный вектор определяется, есть не что иное, как плотность 
падающего полусферического излучения Епад (АГ, п):

Епад(М,п) = (Е^П1)= E^(N)dVn(M, N), (12}
(2л)

где Hi — единичный вектор нормали к площадке dF^t в точке М и 
d<?n (АГ, ^) = (</%, пх) = К (М, /V) dFx — проекция элементарного гео­
метрического вектора dtp (М, s) на направление нормали п к данной 
площадке, представляющая элементарный угловой коэффициент излу­
чения (4). Интегралы в (1L) и (12) распространены по мере множества 
лучей и являются интегралами Лебега — Стильтьеса. Заметим, что 
вектор Efe может быть представлен для любого направления п как 
геометрическая сумма двух соответствующих полусферических векто­
ров излучения Е(я(АГ) = n) + Е^(М, п), М € %v. В случае гра­
ничных точек М 6 ^соответственно имеем: Е4Я(АГ)=Е2ге(АГ)-|-п1£,^(ЛГ),

Аналогично получаем разложение и для Ерез (4):
Ерез (М, п) = Е^ад (АГ, гі) — Е^ад (АГ, п), Al € 2U (13}

Ервз(М) = Епад(М)-Е,ф(М) = А(М)[Епа^^ М E^f- (14)
Интегральные ура внени я для стационарного поля 

теплового излучения легко вывести на основании классифика­
ции видов излучения (4). Рассматривая основную постановку объемной 
задачи, когда заданными являются: конфигурация системы, поля тем­
ператур и оптических констант и требуется определить распределе­
ние плотностей различных видов излучения как по граничной поверх­
ности, так и по ее объему *,  находим:

* Рассматривавшиеся до сих пор в литературе задачи о лучистом обмене в систе-. 
мах серых тел, разделенных диатермической средой, сводились к определению лишь, 
граничных (поверхностных) распределений плотностей соответствующих видов излу­
чения (4),

* Если Епад определяется только на границе системы, областью интеграции, 
в уравнении (15) будет вся поверхность F системы (4).

Епад(М,п)~ R(N)Enad(N)K(M,N)dFN =
F' (М, п)

= A(N)E0(N)R(M,N)dFN, (15}
F' (М, л)

Ерез(М,п)- ^Epe3(N)K(M,N)dFN = ^E0(N)K(M,N)dFN, 
(F) (Г)

М 6 2k, N € %р. (16),
В уравнении (15) интегрирование распространяется на переменную 

область F’ (АГ, ri), зависящую от расположения (М) и ориентации (п) 
площадки dFM и соответствующую полусферическому телесному 
углу « = 2те. В уравнении (16) интегрирование ведется по всей поверх­
ности F системы **.
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Рассмотрим, далее, вторую постановку задачи, которая отличается 
ют первой тем, что вместо температурного поля на границе задается 
поле плотностей результативного излучения Ерез * Получаем:

* Здесь также рассматривается обобщенная постановка объемной задачи.

Епад (Ж, и) - J Епа6 (^) К (М, N) dFN =
F’ (ЛІ. я)

= — 5 Epe3^K(M,N)dFN, М € (17)
F’ (X, п)

Езф(М)- E^(N)K(M,N)dFN = — Ере,(М), М £%F, N^^F. (18)

Если уравнение (17) рассматривать как двумерное, определяющее 
поле значений Епад только по поверхности F. системы, то оно будет 
.эквивалентным интегральному уравнению (18). Легко видеть, что эти 
уравнения не имеют единственного решения. Это следует из того, 
что соответствующие им однородные интегральные уравнения имеют 
фундаментальные функции (нетривиальные решения). В частности, 
однородное уравнение для (18) имеет вид:

Е,Ф(М) — E3/(N)K(M,N)dFN = G. (19)
(F)

Физически это уравнение, очевидно, будет характеризовать случай 
термодинамического равновесия системы. Его нетривиальное решение 
будет иметь следующий вид: Еэф = Еа = Со (Т]1 ОО)4 = const, где Т — 
абсолютная температура.

Существование решений уравнений (18) и (17) на основании третьей 
теоремы Фредгольма (5) вытекает из следующего условия ортогональ­
ности (имеющего, в .силу (19), вырожденный характер):

^Epe3(M)dFu= ф(Е^, nJ (/Ли = О, (20)
(F) (г)

которое для замкнутой излучающей системы всегда выполняется, так 
как, будучи для диатермического и стационарного (соленоидального) 
поля выражением теоремы Остроградского, оно является, таким обра­
зом, следствием закона сохранения энергии.

В заключение заметим, что при переходе от кинетики к термоди­
намике лучистой энергии в связи с вырождением поля излучения 
в равновесное состояние и его характеристик в параметры состояния, 
сохраняющие постоянные значения для всех точек системы, теория 
настолько упрощается, что ее аналитические методы почти полностью 
утрачивают свое значение. Действительно, в случае термодинамического 
равновесия интегральные и дифференциальные уравнения излучения 
вырождаются в тождества. Значительно сокращается число видов 
излучения и утрачивают смысл различные постановки задачи о лу­
чистом обмене. Векторные представления, однако, еще находят при 
этом частичное применение вследствие динамического характера тер­
модинамического лучистого равновесия. Отметим в связи с этим, что 
векторные представления, естественно, совершенно неприменимы 
в термодинамике материальных тел.
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