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МАТЕМАТИКА
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К ТЕОРИИ ПОЛЯ ЛОКАЛЬНЫХ КРИВЫХ в хп

(Представлено академиком И. Г. Петровским 30 III I960)

1. Рассмотрим в n-мерном центрально-аффинном пространстве Еп 
кривую

ха- = 1а(г() (а, р, у, I = ],..., п), (1)

с которой сопоставляется одномерное пространство с точечной 
координатой г). Можно предположить, что кривая (1) не лежит в гипер­
плоскости, проходящей через центр Еп, ибо иначе геометрия такой 
кривой совпадает с геометрией кривой в (п—1)-мерном центрально­
аффинном пространстве. При этом предположении вектор Т и его 
первые п — 1 производные по у образуют п независимых векторов, 
отсюда следуют соотношения:

rf" /“ d" } dia + = (2)
ат) dr[ * dt\

При преобразовании = параметра совокупность функций 
О1, ..., Q" преобразуется как ц-компонентный дифференциально­
геометрический объект класса п в пространстве Хъ сопоставленном 
с кривой (1). Этот объект инвариантно связан с кривой и, в свою 
очередь, определяет кривую в Еп с точностью до автоморфизмов, т. е. 
центрально-аффинных преобразований пространства Еп.

Однако первая компонента Q1 объекта Q4 сама определяет 
однокомпонентный дифференциально-геометрический объект; именно, 
у = п И1 есть объект аффинной связности в Xv Используя у 
для ковариантного дифференцирования плотностей в Хг, можно пере­
писать соотношения (2) в следующем виде:

(2) Ці-l) tn)
° + 2/“ + ... + w уТ + wK. = 0, (3)

где v — оператор ковариантного дифференцирования относительно 
„ (2) («)

объекта у и w, ..., w — плотности в Хг веса 2, ..., п соответственно. 
Эти плотности являются дифференциальными комитантами объекта 
И’, т. е. функциями от этого объекта и его дифференциального про­
должения, и обратно, объект Q4 есть совместный дифференциальный 

(2) (я)
комитант от у, w, ..., w. Отсюда: заданием объекта у и п — 1 плот- 

(2) (л)
ностей w, ..., w кривая (1) определена с точностью до автоморфиз­
мов пространства Еп.
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(2) U)
С помощью одной из плотностей w, ..,, w (для определенности — 

наибольшего веса отличной от нуля) можно ввести центрально-аффин­
ную дугу кривой и построить полную систему инвариантов кривой — 

(«)
центрально-аффинные кривизны. Например, если w 0, то централь­
но-аффинная дуга s и центрально-аффинные кривизны хъ ..., кри­
вой определяются соотношениями:

С л vW w * Л [ИП/А ...

Заданием центрально-аффинных кривизн как функций от центрально­
аффинной дуги s кривая определена с точностью до автоморфизмов 
пространства Еп.

Центрально-аффинная геометрия кривой в Еп, расположенной 
в гиперплоскости, не проходящей через центр Ет совпадает с геомет­
рией кривой в (п—1)-мерном аффинном пространстве. Так как при 
w
w = 0 кривая в Еп лежит в гиперплоскости, не проходящей через 
центр Еп, то на указанном пути получается одновременно теория кри­
вых в общем аффинном пространстве.

2. Пусть в каждом локальном касательном Еп пространства Хп 
задана некоторая кривая; мы получаем поле локальных кривых, опре­
деляемое уравнениями = /аЦ3; т;). Ограничимся в дальнейшем 
случаем, когда ни одна кривая поля не лежит в гиперплоскости, про­
ходящей через центр локального касательного Ет и, кроме того, 
положим пу>3, ибо для п = 2 геометрия поля локальных кривых 
соответствует двумерной геометрии Финслера, а для п = 3 теория поля 
локальных кривых построена В. В. Вагнером (х).

. Теперь с каждой точкой пространства ассоциируется некоторое 
Хг (соответствующее локальной кривой поля), поэтому задание поля 
локальных кривых определяет составное многообразие (2). Опре-

(2) (л)
деляя для каждой локальной кривой объекты у, w, ..., w, получим 
поля локальных дифференциально-геометрических объектов в состав­
ном многообразии Хп+т- Точно тай же поля локальных дифферен­
циально-геометрических объектов образуют компоненты векторов а

(а, Ь, с = 0, 1, ..., п—1, Д°Л = ZY) и векторов/у, взаимных к пре­
дыдущим.

В составном многообразии Хп^^) вводим линейную связность, 
относительно которой будем производить операцию базисного абсо­
лютного дифференцирования (х). Используя независимость векторов 
а

получаем разложения
a a a b s а а .

= / Z[pZT] ( I = ~ I), (5)
• be ^bc cb'

a
в которых коэффициенты I являются локальными плотностями веса 

ьс
b + с — а соответственно. Можно показать, что связность в составном 
многообразии Х+щ инвариантно определяется полем локальных кри­
вых, если потребовать выполнение условий:

к п—2 л—1
I = 0(6 = 2........ п -1), / =0, I =0. (6)

k—2, k—1 п—3, л—1 п—3, л—1

Обозначим через Rab коэффициенты в разложении объекта кривизны 
а b

(3) связности по бивекторам Используя тождество Вагнера ((*), 
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стр. 291) и обобщенное тождество Риччи, устанавливаем, что все 
плотности Rab и 7 (а < п — 1) являются целыми рациональными функ- 

bc
циями от плотностей

п-1 (2) (п)
7, w, ..., w, Dy (D = ^CRD^ (7)

ab с с

и получающихся из них с помощью применения операторов v и D. 
а

3. Два поля локальных кривых называются эквивалентными, если 
преобразованием переменных

(8)

можно достигнуть совпадения уравнений одного поля в новых пере­
менных с уравнениями другого поля в старых переменных. Если среди 
плотностей

(2) (п) я—1 п—1
w, ... , w, Dy, 7 (а + b =R п — 1), А / (а + b = п — 1),

a ab ab
п—\

D I (Ь + с = п — 1, а > 0) (9)
а Ьс

существует хотя бы одна отличная от нуля, то, возводя ее в соответ­
ствующую степень, получаем отличную от нуля плотность v веса 1 и, 
вслед затем, инвариантные формы Пфаффа

1 п—1
ы0 = l^d^, = V Rd^, = (v)"'1 /а^а, ып = (v) 8v), (10) 

тде 8т; — абсолютный дифференциал локальной координаты ((*), стр. 
285). Для эквивалентности двух полей локальных кривых необходима, 
прежде всего, возможность одинакового построения таких инвариант­
ных форм или одновременное обращение в нуль всех плотностей (9) 
для обоих полей. Если инвариантные формы (одинаково построенные) 
существуют для обоих полей, то необходимые и достаточные условия 
эквивалентности получаются (и притом в инвариантной форме) как 
условия интегрируемости системы Пфаффа, составление которой, так 
же как и отыскание условий ее интегрируемости, производится спо­
собом, вполне аналогичным указанному В. Вагнером (Р), стр. 304 и след.).

Если все плотности (9) для обоих полей обращаются в нуль, то 
такие поля эквивалентны в том и только том случае, когда: 1) инва­
рианты I (l = I) для обоих полей постоянны и имеют одинаковое 

X 012 J
численное значение, инварианты J ( J — I для обоих полей или 
одновременно постоянны и равны или одновременно не являются 
постоянными; или 2) инварианты I для обоих полей не являются 
постоянными, инварианты J для обоих полей являются функциями от 
7 одного и того же вида, точно так же инварианты DI для обоих 

о
полей являются функциями от 7 одного и того же вида.

Решение задачи эквивалентности двух полей показывает, что пол­
ная система инвариантов поля локальных кривых может быть построена 
из плотностей (7) и получающихся из них применением операторов 
V и D. а
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Поле локальных кривых называется постоянным, если, выполняя 
преобразования переменных (§), можно уравнения поля привести 
к виду (1), т. е. все локальные кривые для всех точек Хп определить 
одинаковыми уравнениями. Справедливо предложение: для того 
чтобы поле локальных кривых было постоянным, необходимо и доста­
точно выполнение условий

а (2) (л)
/ = О, = Daw = 0, Day = 0. (11)

Ъс

Полученные результаты находят применение к вариационной задаче 
Лагранжа при п — 2 дополнительных условиях, так как в этом случае 
поле индикатрис метрики Лагранжа является полем локальных кри­
вых в Хп-

Поступило
10 I 1950
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