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МАТЕМАТИКА

В. А. МАРЧЕНКО

НЕКОТОРЫЕ ВОПРОСЫ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНОГО 
ОПЕРАТОРА ВТОРОГО ПОРЯДКА

(Представлено академиком С. Н. Бернштейном 29 III 1951)

1. Рассмотрим заданный на полуинтервале [0, а), а<оо, дифферен­
циальный оператор второго порядка L вида

L [м] = и’ (х) — q (%) и (х), (1)

где q (х) — вещественная функция, суммируемая в каждом интервале 
{0, 6] при Ь<а. Условимся обозначать через <ра(Х,х) и Оа(Х,х) реше­
ния уравнения

L [и] + Хи = 0, (2)

удовлетворяющие начальным условиям

(X, 0) = sin а, (X, 0) = — COS а; (X, 0) = cos а, 0а (X, 0) = sin а.

Теорема А. Для каждой пары операторов Lr и L2 вида (1) и 
чисел аъ а2 (sinaj^O, sinaa¥=0) существует оператор V, опреде­
ленный на всех суммируемых в каждом интервале (0, Ь) (Ь<^а) 
функциях f(x) равенством 

X
dt,

о 

такой, что
V [у«? (\ х)] = (X, х), V = sin aj / sin а2,

где <ра1)(Х,х) и х) ~ решения уравнения (2) для операторов Lr 
и Lz соответственно. При этом ядро K(x,t) вещественно и равно­
мерно ограничено в каждом квадрате Q^x^b, 0-^.t^b, b <^а.

Оператор V мы будем называть оператором преобразования и обо­
значать через

Доказательство для случая L2 [а] = и"(х) и ax = а2 = к/2 имеется 
в работе (J). В общем случае доказательство проводится аналогично.

2. Сформулируем основные результаты Г. Вейля, нужные нам в 
дальнейшем (они подробно изложены в книге (2)).

I. Для всех невещественных значений X существует решение урав­
нения (2) ф(Х,х), принадлежащее L2[0,a), вида

Ф (X, х) = 6a (X, х) + т (X) <pa (X, х), 

где функция т (X) аналитична в верхней (нижней) полуплоскости и

т (X) = т (X); Im [т (X)] Im [X] < 0. (3) 
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Для данного а функция т (X), вообще говоря, не единственна. Если 
функция т (X) единственна, то граничное условие в нуле

у (0) cos а + у (0) sin ос = 0
определяет граничную задачу для оператора L. Если же т (X) не един­
ственна, то для получения граничной задачи следует, кроме гранич­
ного условия в нуле, выбрать определенным образом функцию т(\), 
что соответствует заданию граничного условия в точке а.

II. Каждой граничной задаче соответствует неубывающая функция 
обложения р(Х) (—оо<Х<оо), взаимно-однозначно связанная с функ­
цией т (X) равенством

1 СР (Х2) — Р (М = “ Иш \ — Im [m (« + Z8)l du, (4)
л а -> о JX,

где Хх и Х2 — любые точки непрерывности функции р (X). При этом 
функция р(Х) порождает изометрическое отображение пространства 
Z2[0, а) На р ; (,— оо, оо) по формулам

а оо

= = F(X)<pa(X,x)<Zp(X), (5)
0 • — оо

где интегралы понимаются в смысле сходимости в метриках про- 
странств L2 [0, а) и р (— оо, оо) соответственно. Имеет место 
равенство Парсеваля 

а со

$ |F«rfp(X).
0 — со

3. Настоящая заметка посвящена доказательству и некоторым имею­
щим значение в физике следствиям следующей теоремы:

Теорема 1. Пусть даны два оператора и L2
/-![«] = и" (х) — qT (х) и (х), Z 2 И = и" (х) — q2 (х) и (х).

Меняя всевозможным образом граничные задачи для операторов 
Lx и L2, мы получим два множества функций обложения Rx и R2. 
Если существует пара функций рДХфб R1 и р.2(Х)б У2, связанных 
равенством pj (X) = ср, (X) (с — константа), то qy (%) = q2 (х) почти 
всюду в [0, а). Иными словами, любая из функций обложения р (X), 
фигурирующих в формулах обращения (5), однозначно определяет 
оператор L.

Доказательство. Пусть функция рх(X) соответствует граничной 
задаче для оператора с условием у (0) cos 04 -|- у' (0) sin ах = 0, а 
Р2(X) — граничной задаче для оператора Z,2 с условием _y(0)cosa2y 
У У (0) sin a2 = 0 (при этом, конечно, возможно, что одна из этих задач 
или обе имеют граничное условие и в точке а). Допустим еще, что 

sinax=yO, sin<x2y=0. (6)
Согласно II, для любой функции f(x) € L2 [0, а) имеем:

ОО

/(^) = FfX^’&xJdpipi).
—- оо

Применяя к обеим частям этого равенства оператор V = V щь,а,а, j., 
получим: 

во оо

И/]= f (X) V [фа? (х, л)] (X) = ^^ (^^’(Х, х)^р2(Х).

458



Поэтому равенство Парсеваля дает:
ОО ОО
J № (X) = f 

— со — оо

откуда следует, что оператор Vx = v Jc~‘/>F унитарен. Легко видеть, 
что оператор Ир имеющий, согласно теореме А, вид:

Уі [/] = ^-^/(х) + v^cr-'^K (х, dt,
о

может быть унитарным только при K(x,t) = 0 и jc-1^л[ = 1.
Поэтому для оператора V имеем:

У\П = ^/(х)
и, в частности,

(X, х) = V (А, х)] = (X, х),
откуда, очевидно, следует, что (х) = (х) почти всюду в [0, а),
аг = а2 и с = 1. Случай, когда условия (6) не выполнены, легко свести 
к рассмотренному.

4. Пусть оператор L имеет дискретный спектр. Рассмотрим две 
граничные задачи (а) и (р) для оператора L с условиями

у, (0) cos а + у (0) sin а = О (а); у (0) cos р + у (0) sin р = 0 (Р) 
и одним и тем же условием в точке а, если его вообще нужно зада­
вать. Известно, что в этом случае функции ma(A) и mg (А), соответ­
ствующие этим задачам, мероморфны, связаны равенством

1 + hm (X)
W (X) = ct£ - й) °°) (7)

и имеют только простые и вещественные полюсы и нули. Характери­
стические числа (спектр) задачи (а) совпадают с полюсами та (А), а 
спектр задачи (Р) — с полюсами mg (А), т. е., согласно (7), с нулями 
h — та (X).

Теорема 2. Рассмотрим граничные задачи:
(04) и (PJ для оператора Lr с граничными условиями

у (0) cos ах + у (0) sin a, — 0 (ax); у (0) cos рх + у’ (0) sin рх — 0 (рх) 
и одним и тем же условием в точке а, если его вообще нужно 
задавать;

(а2) и (р2) для оператора Ь2 с граничными условиями
у (0) cos а2 +у (0) sin а2 = 0 (а2); у (0) cos р2 + у' (0) sin р2 = 0 (Р2) 
и одним и тем же условием в точке а, если его вообще нужно 
задавать.

Если ctg (рх — ах) =р оо, ctg (р2 — а2) =р оо, операторы и L2 имеют 
дискретные спектры и спектр задачи (ах) совпадает со спектром 
задача (а2), а спектр задачи (рх) — со спектром задачи (р2), то 

(х) = ^2 Iх) почти всюду в [0, а).
Доказательство. Из условия теоремы и формул (7) следует,

(z)
7“ (^і = Ctg (Px — ax), A2 = ctg (p2 — a2)) есть целая функ- 
(z)

ция без нулей (здесь функции тУ (z) и m^ (z) соответствуют зада- 
h -

чам (ах) и (а2)). Поэтому g (z) = log

hx —
Из условий (3) легко вывести, что arg------

л2-

(г)— тоже целая функция.
(г)
И^Дг)
——■, а с. ним и Im ц (г)<7 (z) . о v /
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равномерно ограничены во всей плоскости, откуда следует, что 
g(z) = c, где с — вещественная константа. Но тогда — т(̂  (z) = 
= ch2 — (z) и Im m(̂  (z) = c Im т^ (z), т. e., согласно (4), px (X) =
= cp2(X), где Pi(X) и p2(X) — функции обложения, отвечающие задачам 
(aj) и (a2) соответственно. Поэтому из теоремы 1 следует, что 
qx W = Яг (•*) почти всюду в [0, а). В простейшем частном случае, когда 
полуинтервал [0, а) конечен и я Л*} и ^2(х) суммируемы во всем 
полуинтервале [0, а), мы получим уточнение теоремы Борга (3).

5. Рассмотрим теперь оператор L на полуоси [0, оо) при дополни­
тельном условии, наложенном на q (х):

ОО

(1 + х)|^(х)| г/х<оо. (8)
о

Легко видеть, что условие (8) влечет аналитичность в нижней 
полуплоскости функции

М (s) = i sin a — + у § e~lstQ (0 фа (s2> 0 dt
о

и непрерывность функции sM (s) на вещественной оси. Далее, равно­
мерно в нижней плоскости и на вещественной оси

lim М (s) = i sin а, если sinay=0;
(9) 

lim sM (s) = — 1, если sin a = 0.
I J l-^-oo

При вещественных s имеют место асимптотические формулы: 
(s2, Х) = I М (s) I Sin (SX + Wa (s)) + 0 (1),

где <oa (s) = arg Л4 (s) называется предельной фазой решения <pa(s2, х). 
Известно, далее, что функция обложения р (X), соответствующая гра­
ничной задаче для оператора L с условием

(0) cos a + У (0) sin a = О, (10)
днозначно выражается через М (s), если оператор L не имеет точеч- 

оого спектра.
Теорема 3. Если операторы Lx и Ь2 удовлетворяют условию 

(8), граничные задачи (10) для этих операторов не имеют точечной, 
части спектра и предельные фазы (s), (s) равны, то qx (х) =
= q2 (х) почти всюду в [0, оо).

Доказательство. Из условия теоремы следует, что функция 
g (g) = Мг (z) / М2 (z) аналитична в нижней полуплоскости, непрерывна 
и вещественна на вещественной оси. Отсюда по принципу симметрии 
следует, что g (z) — целая функция. Далее, из (9) следует, что g (z) — 1 
при } $ |->оо, т. е., по теореме Лиувилля, g (z) = 1, откуда следует, что 
Р1 (X) = р2 (X), и, по теореме 1, qx (х) = q2 (х) почти всюду. Если sin a = О, 
то условие (8) можно ослабить, заменив его на f х j q (х) | dx <Д оо, что 

о
приведет к результатам Левинсона (4).
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