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ТЕОРИЯ УПРУГОСТИ

Я. С. УФЛЯНД

ИНТЕГРАЛЬНОЕ УРАВНЕНИЕ ИЗГИБА СЕКТОРНОЙ ПЛИТЫ 
С ЗАКРЕПЛЕННЫМИ РАДИУСАМИ

(Представлено академиком А. Ф„ Иоффе 13 III 1950)

Пусть упругая тонкая плита, изгибаемая произвольной поперечной 
нагрузкой q, имеет форму кругового сектора. Для случая свободно 
опертых радиусов точное решение задачи изгиба получено Б. Г. Га- 
леркиным (х). Если радиусы плиты закреплены, то можно применить 
метод опорных моментов И. Бубнова (2), что связано с чрезвычайно 
громоздкими выкладками (см., например, работу (3), где для случая 
равномерной нагрузки подсчитаны изгибающие моменты на закреплен­
ном контуре кругового прямоугольника *).  В настоящей работе задача

* Случай сектора Карье не рассмотрен.
** По полоскам с угловым раствором е (е->0).
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сведена к некоторому интегральному уравнению 
с помощью приема, предложенного Г. А. Грин­
бергом (4) для прямоугольной плиты.

Если обозначить через и прогиб плиты, умно­
женный на цилиндрическую жесткость (и = 
— Dw, £> = £А3/12 (1 — v2)), то для величины 
и (г, 9) будем иметь бигармоническое уравнение

Д2« = q (г, 9) (1)
и граничные условия на закрепленных радиусах 
(рис. 1):

м 1е=о = и |0=2y = 0’ (2)

<3’

Кроме того, должны быть заданы граничные условия на дуге г = ft.
Решение задачи ищем в виде ряда:

и (г, 9) = 2 (г)а«е (^-п= Y (4)
n=Q

При этом условия (3) будут удовлетворены.
Приложим по кромкам 9 = 0 и 9 = 2у**  распределенные нагрузки 

/°(г) и /2т(г) (рис. 1), которые впоследствии будут подобраны так, 
чтобы удовлетворить условиям (2). Подставляя (4) в (1), получим:

” г id а2 1 2
2 + un(r)cosanQ=p(r,Qy (5)
л=0



( 9(Г, 6) + (И при 0<6<е, 

Р(г>6)=<| q[r, 6) + Л_ (г) при 2у — е < 0 <f2y, 

I q (г, 0) при остальных 0.

Если разложить функцию р (г, 0) в соответствующий тригонометри­
ческий ряд

ОО
р (г, 9) = (г) + 2 Рп (И cos а„0,

п=1

где
2т

рп(г) = [f°(r)+ (-W2^)] + яп(г\ <7п(И = у^ я (г, 0)cosan0d9,
О

то для ип(г) получается уравнение:

г d2 id т

L + vsf ”и»= (г)’
общий интеграл которого при п 1 будет:

«„(г) = Anran + Bnra^2 + СпГа" + +2 +

о

+ Л
При п = 0 имеем:

и0 (г) = До + £0г2 + Со 1g + Dor2 Ig y +

+ t $ -r2 + +r2) v] dt-

(7)

(8)

Постоянные Am Bn, Cn, Dn должны быть определены из двух ус­
ловий на краю г = R, а также из условий «! = | = после

чего выражение (4) будет содержать две функции/0 (г) и /'т (г), вхо­
дящие под знаки интегралов.

Приравнивая нулю значения и (г, 0) и и (г, 2у), т. е. удовлетворяя 
остающимся двум условиям (2), получим систему двух интегральных 
уравнений с двумя неизвестными функциями /° и /Л которая легко 
приводится к двум интегральным уравнениям, содержащим порознь 
две неизвестные функции. Если нагрузка q (г, 0) симметрична отно­
сительно средней линии 0 = у, то f° (г) = f2r (г) = f (г), и задача сво­
дится к решению одного интегрального уравнения.

Приводим интегральное уравнение для того случая, когда край 
г = R закреплен:

r к
\f(t)P (r, t) dt+ \f(t)P (t, r)dt + \f(t)Q (r, t)dt = - 4уФ (r, 0), (9) 
0
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где
О, 2, 4,. . . О, 2, 4, . . .

P(r, t) = 2 Pn(r,t\ Q(r,t)= 2 Qn(r,ty,

0°)
P0(r, t) = P (1 + lg^)

Ф (r, 0) =

Qo (r, Z) = [21g A 1g - 1 + 1g ;

л
+ $ Яп R) Pn (t, r)tdt + Qn^Qn^^tdt COSa„0. (11)

Интегральное уравнение (9) допускает эффективные приближения, 
основанные на закреплении отдельных точек на кромках 0 = 0 и 0 = 2у 
и замене распределенной нагрузки f(t) силами, сосредоточенными 
в закрепленных точках. Хорошее приближение получается уже при 
одной закрепленной точке (г = /?/2) *.

* Заметим, что наше решение точно удовлетворяет четырем граничным условиям 
из шести, в то время как при решении способом опорных моментов точно удовлет­
воряют трем условиям: w |0=о = w | е==2т = w |г=^ = 0.

** В случае полукруглой плиты (у = тг/2) полученное нами первое приближение 
с точностью до 3—5% совпадает с результатами О. М. Сапонджяна (6), полученными 
иным методом.

Приближенные формулы для прогиба в центре плиты («„ = и, (RI1!, у)) 
и максимального изгибающего момента на закрепленной дуге 
(Mum = Мв (R, у)) имеют весьма простую структуру:

«о = Ф (R/2, у) - цФ (R/2, 0), и = S (y)/S (0); ]
5(0) = ^' (3—2 lg2—2 lg22) +

oo (12)
+ 21 t + “ 16 (“2» +. 4 }cos

- L - 2- W • <13>

В табл. 1 приведены значения 
коэффициентов А и Д характеризую­
щих прогиб в центре плиты и макси­
мальный изгибающий момент на дуго­
вой заделке, для трех типов внешней 
нагрузки: 1) равномерная нагрузка**

Z, £й3 12 (1 - V2) ,q _ «0 , kx -
Л1 \

= — J; 2) сила Р, сосредоточен- 

ная в центре плиты (^а2 = w0 =

Таблица 1

Y тс/8 7Т/4 я/2

*1 0,00133 0,00840 0,0209
0,0220 0,0366 0,0597

х2 0,0140 0,0452 0,0755
^2 0,0481 0,0854 0,134

0,00273 0,0172 0,0485
0,0350 0,0536 0,0809

    



<2 и_ vs\ м \= 3) нагрузка интенсивности p, распреде­

ли Eh3 12(1 —v2) ,ленная по средней дуге сектора ^л3 = w0 = u0—

=------). При расчетах было принято v = 0,3.
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