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МАТЕМАТИКА

Я. в. БЫКОВ

К ПРОБЛЕМЕ СОБСТВЕННЫХ ФУНКЦИЙ НЕЛИНЕЙНЫХ 
ИНТЕГРАЛЬНЫХ УРАВНЕНИЙ

(Представлено академиком С. Л. Соболевым 18 III 1950)

В данной работе рассматривается нелинейное интегральное урав­
нение

Хф(х) = \---\K(x,v)f(v,t1,...,tm>^(t1\...,<i)(tm),^(v})dcmdv, (1)
в в

где В — замкнутая ограниченная область r-мерного евклидова про­
странства; К (х, v) и / (v, 4, • • •, х1...,хт,у) — заданные функции,
причем / (v, , tm, 0,..., 0) = 0 для v, tx,..., tm £ В; X — параметр.

Если существует решение уравнения (1) с отличной от нуля нор­
мой, при некотором значении параметра, то это решение называют 
собственной функцией уравнения (1), а соответствующее значение 
параметра — собственным значением.

Если f(v, tm, хь ..., хт, у/) не зависит от tm, хь..., хт 
то из уравнения (1) получается уравнение типа Гаммерштейна

Х<р (х) = К(х, ср (и)) dv. (2)
в

Вопрос существования собственных функций уравнения (2) изучался 
в работах (1-4).

Мы полагаем, что К(х, г/) — ограниченное симметрическое положи­
тельное ядро, которое может иметь разрывы, допускаемые в теории 
линейных интегральных уравнений. f{v, tx,..., tm, хь ..., хт, у/) в неко­
торой окрестности хх = ... = хт = у = 0 удовлетворяет следующим 
условиям: 1) измерима по совокупности аргументов v, tb для 

и |/(т>, tm, xlf..., xm у) I < E (17, ty ..., tm) £L2,m+l; 
2) непрерывна по аргументам xb.xm, у и по аргументам хь ..., хт 
имеет непрерывные частные производные первого порядка, причем 
/У (т/, tx,..., tm, хх,..., хт, у) Idxj = df (tj, tx,..., tj_i, v, ..., tm, xB... 
..., Xj-y y, xj+1, ...,xm Xj) / dxj (j = 1,..., m); 3) | df/dxj | < Ex (v, s»... 
..., sm) QL2,m+i (j = 1,..., m). Эти ограничения, накладываемые на 
функции К (х, г») и / назовем условием (А).

Теорема. При выполнении условия (А) уравнение (1) имеет не 
менее счетного числа собственных функций.

Доказательство. Пусть условие (А) выполнено в области 
Ч 4, • • •, tm €В-, — I хь..., хт, у^1. Пусть {<рА (х)} — фундаментальная 
система собственных функций и {ХД — система соответствующих собст­
венных значений, принадлежащие ядру К (х, v). Пусть, далее, 
} К(х, г») | М2. Рассмотрим уравнение
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Хф (х)> ^...^Кп(х, tm, 9 &),..., 9 (tm), 9(^)) dcm dv, (3)
в в

где Кп(х, v) = (« — фиксированное число).
»=і

Из существования ненулевого решения системы

hn (ЛЬ --Лп (tm\ hn (г/)) 9* (v) dam dv, (4) 
в в

n
где hn(t) = 2 аА-(Л, ПРИ некотором значении параметра X, следует 

<=1
существование нетривиального решения уравнения (3).

Пусть с — произвольно фиксированное положительное число, лишь 
бы 2сМ^1. Введем вспомогательное обозначение. Под знаком функ­
ции / (ц, tb..., tm, хь ..,, хт, z) вместо аргументов х^ ,..., Xjk (все 
Ji, • ••,]* разные) напишем нули, вместо остальных xj напишем, соот­
ветственно, hn(tj). Сумму всевозможных слагаемых такого вида обо­
значим через (v, tb ..., tm, xu..., xm, z). Для точек поверхности

п
эллипсоида а? — с~ (Sn) образуем вспомогательную функцию 

/=1

(аі> • • • > ал) т + 1 ' ’ ’ ’ ' ' ’ ’ +
в о

1 2 т(т — !)■■ -(т — # +Т) ^ік^ ‘ ‘ ’ ^т’ ’ хт> z)} dz damdv.
k—\

Тогда

da,k f Л, • • • > (Л)> • • • > (^т)’ (^)) (“П)^ d“V.
В

По теореме Вейерштрасса функция Нп, как непрерывная в замкнутой 
ограниченной области, по крайней мере в одной точке Вп(В",..., В") 
достигает абсолютного минимума dn и по крайней мере в одной точке 
Ап (А",..., — абсолютного максимума Dn. В согласии с теоремой
Лагранжа, координаты точек Вп и Ап при некоторых значениях пара­
метра X" и >п удовлетворяют системе (4).

п п
Ф" (^) = 2 W и " (%) = 2 с^ть собственные функции 

<=1 і=і

уравнения (3), отвечающие собственным значениям X" и X". I ф” (л) I ■< сМ

Для каждого натурального числа п образуем такие собственные 
функции и значения. {X"} и {ХД — ограниченные последовательности. 
Семейства {ф"(х)} и {Тл (%)} компактны в на основании леммы 
Вайнберга. Выберем систему индексов 1Ь ..., 1к,... так, чтобы суще­
ствовали:

limX'A = X°; 1ішХг* = Х°; lim ф;* = ф (%); lira (х) = V (х). 
k —> оо k —> ОО k —> ОО k ОО
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Функции ф(х) и Т (х) удовлетворяют уравнению (1) соответственно 
при значениях параметра л° и Х°. При доказательстве мы пользуемся 
одной леммой В. В. Немыцкого (5). Если в некоторой точке (^от) 
принимают положительное (отрицательное) значение, то Y (х) (ф (х)) 
не есть тождественный нуль, так как sup НАр) = D = //^(ф). Пусть 
ф (х) = Т(х) = 0. Тогда ~^9i(x) есть собственная функция уравне­

ния (1). Пусть для числа сх (2сгМ Д I) построили собственную функцию 
ф^х). Для положительного числа с2, удовлетворяющего неравенству 

с\ М1 mes В < | фх (х) |2 dx, построим собственную функцию ф2 (х). 
в

Очевидно, | ф2 (х) [2 dx < | фх (х) )2 dx. Продолжая этот процесс, за- 
в в

вершим доказательство теоремы.
Следствие. Интегральное уравнение

ц, . 9 (^і). • • •, 9 (Л»), 9 И) dsm dv

имеет не менее счетного числа собственных функций, если К(х, v) и 
fm • • •, xn ..., xm, y) (m — 0, 1,..., л) удовлетворяют условиям 
теоремы.

Теорема утверждает наличие не менее счетного числа собственных 
функций. О числе линейно независимых собственных функций даже 
для простого уравнения (2) до сих пор никаких результатов не полу­
чено. Ниже мы приведем случай, когда можно гарантировать суще­
ствование не менее двух линейно независимых собственных функций.

Рассмотрим частный случай, когда f (y,sb .. .,s^, xlt ..., хт, у) 
есть однородная функция k-ro измерения относительно аргументов 
хь ..., хт,у. Пусть <р0(х) есть собственная функция (1), отвечающая 
собственному значению Хо. При Хо = 0 функция (х) при любом h 
есть собственная функция. При ХоДО функция ?0 (х) есть
собственная функция, отвечающая собственному значению щ Если в 
этом частном случае на (^со) принимает как положительное, так 
и отрицательное значения и k — нечетное число, то существует не 
менее двух линейно независимых собственных функций.

Пусть а — вещественное неотрицательное число, / (^, , sm) —
симметрическая по всем своим аргументам, суммируемая со своим квад­
ратом функция. Если функция

1 \ V

п 15

«т) 2
<Ж

' 00 -1а+1
2°w< da™dv

- i— 1

на (^ео) принимает значение b Д 0, то любое действительное число ц, 
имеющее тот же знак, что и Ь, есть собственное значение уравнения

*9 (х) = J К^х, v) / (-ц, $1(..., sj (sx)... ДН (sm) (г/) d<sm dv. (5) 
в в

Предполагается, что a (m + 1) + /п — 1 > 0. В частности, если Нт при­
нимает положительное и отрицательное значения, то любое вещест­
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венное число — собственное значение уравнения (5). Если а(т + 1)-р 
+ т — 1 есть четное число, то собственные функции, соответст­
вующие разным по знаку собственным значениям, линейно независимы.

Пусть fn (р, q) — симметрическая суммируемая со своим квадратом 
функция для р, qQB, а Ф(р,и) такая, что Фф,0)=0 и в некоторой 
окрестности « = 0 непрерывна по п и суммируема по р^В, причем 
Ф(р,и)|<а(р) €L2. Тогда интегро-дифференциальное уравнение

X fe + й) А (А ?)«(?) dq + и (р) /2 (р, q) и2 (q) dq + Ф (р, и (р))
\ у ' в в

имеет не менее счетного числа нетривиальных решений, обращаю­
щихся на контуре области В в нуль. Область 2? предполагается такой, 
что функция Грина уравнения д2и!дх2 + д2и)ду2 = 0, обращающаяся на 
контуре области В в нуль, существует.

Мы будем говорить, что функции fm (у, sb..., sm, х^..., хт, х0) 
(щ = О,1,...) и К (х., г») удовлетворяют условию (В), если: а) К{х,^ — 
симметрическое положительное непрерывное ядро; б) fm (у, ..., sm,
О, 0,..., 0) = 0 в некоторой окрестности Хі = х2 = ... — хт — х0 = 0; 
в) I fm (A Slt...,Sту • • • у ^ту *о) I Fm (ДМ, ...,sm)6T2,m+i; г) ряд

00 г г ГС С Yrz*2 I \ dv у • ■\Pm(y,s1,... ,sm)dsm сходится; д) fm имеют непре- 
Lb в J '

рывные частные производные первого порядка по аргументам хь... 
..., хт х0 и dfm (у, ty..., tm ..., хт, Хо) / dxj = dfm (tj, , v,

, ..., Xp . ■ ■, Xj—i, Xq, Xj-yi j • • •, I dxj9 j ■ — 1, 2, . . . , /7Z

И=0, 1,...); e) | dfm / dXj | < Mm (y, s^..., (/ = 0,1,..., m); ж) ряд

©° Л Л
у (m + 1) .....................(v, sp ..., sm) dam dv сходится.

m=0 В В

Теорема. При выполнении условия (В) нелинейное интегральное 
уравнение

00 Р г
(л) = 2 У • • } К (a S1, • • • > <Р А1)> •••’>? (sm), ? (^)) дст dv 

т=0 В В ’
имеет не менее счетного числа непрерывных собственных функций.

Если ядро К (%, v) допускает разрывы в смысле теории линейных 
интегральных уравнений, то слегка изменим условия ж). В этом слу­
чае собственные функции суммируемы со своими квадратами.

Пользуюсь случаем выразить глубокую благодарность проф. В. В. 
Немыцкому за ценные советы.

Киргизский государственный 
педагогический институт 

г. Фрунзе

Поступило 
24 II 1950
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