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МАТЕМАТИКА

Е. А. БАРБАШИН

О СУЩЕСТВОВАНИИ ГЛАДКИХ РЕШЕНИЙ НЕКОТОРЫХ 
ЛИНЕЙНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ

(Представлено академиком И. Г. Петровским 29 III 1950)

Рассмотрим в евклидовом пространстве Еп систему дифференци­
альных уравнений

— Xi (Xj, х2, • • • I •*»)> і = 1, 2, ..., n, (1)

где правые части суть функции класса Сг.
Пусть область G лежит в Е„; сечением области G назовем 

замкнутое в G множество F, обладающее тем свойством, что всякая 
максимальная связная дуга траектории из G пересекает F в одной 
и только в одной точке. Через f (р, t) мы обозначаем в дальнейшем 
положение точки р через промежуток времени t.

Лемма. Пусть область G обладает сечением F; определим 
функцию t (р) в области G соотношением f (р, — t (р)) cz F.

Для любого е можно указать функцию ср класса Сг, удовлетво­
ряющую в области G условиям

Ыр)-Цр>\<Х,

1

При доказательстве этой леммы мы пользуемся теоремами о про­
должении дифференцируемых функций Уитнея и Эйленберга (г).

Мы скажем, что система дуг траекторий, заполняющих область G, 
неустойчива, если всякая точка р из G, двигаясь по траектории 
системы (1), выходит при t-^oo и за пределы любого огра­
ниченного открытого множества, лежащего вместе с замыканием в 
области G. Мы скажем, что система дуг из G имеет несобствен­
ное седло (В. В. Немыцкий), если существует последовательность 
троек точек {рт qm гп} таких, что каждая тройка лежит на одной 
дуге траектории, точка qn лежит между точками рп и гт последова­
тельности {рп}, {гп} сходятся, соответственно, к точкам р и г из G, а 
последовательность {</„} не сходится ни к одной точке из G.

Теорема 1. Пусть система дуг, заполняющих область G, не­
устойчива и не имеет несобственного седла; пусть, кроме того, 
временные длины всех дуг из G ограничены снизу положительным 
числом.

Мы утверждаем, что
1) Существует сечение S области G класса Сг.
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2) Существует в области G первый интеграл системы (1), при­
надлежащий классу Сг и не обращающийся в постоянную ни в одном 
открытом подмножестве области G.

3) Для любой функции ф (р) класса Сг, заданной на S, и любой 
функции <Др) того же класса, заданной в области G, существует 

п дфункция v класса Сг, удовлетворяющая в G уравнению ^Х{~ = <р 
1 7

и совпадающая в точках S с функцией ф.
При доказательстве этой теоремы мы устанавливаем сначала, с 

помощью теорем В. В. Немыцкого (2), существование негладкого сече­
ния области G, а затем применяем в каждом из перечисленных пунк­
тов сформулированную выше лемму.

Известна теорема Камке (3), устанавливающая существование пер­
вого интеграла и в двумерном случае в некоторой односвязной 
области, не содержащей особых точек; этот первый интеграл оказывает­
ся главным интегралом, т. е. всюду в области удовлетворяет условию 
©’О

Легко показать, однако, что в случае п>2 теорема Камке оказывает­
ся несправедливой. Нам удалось выделить условия, обеспечивающие 
существование главной системы интегралов в случае п = 3.

Теорема 2. Пусть область G, гомеоморфная трехмерному 
евклидову пространству, заполнена дугами системы

^^ХДх^х^х.), / = 1,2,3, (2)

удовлетворяющими условиям теоремы 1.
Существуют в области два первых интеграла иг и и2 системы (2) 

таких, что ранг матрицы || || равен 2 всюду в области G.
При доказательстве этой теоремы мы существенным образом 

используем известную теорему из топологии, утверждающую, что 
существуют два односвязных двумерных многообразия — плоскость 
и сфера.

Предположим теперь, что точка 0(0, 0, ..., 0) является особой 
точкой системы (1), более того, мы предположим, что эта точка 
является асимптотически устойчивой точкой. Можно доказать, что 
траектории области притяжения точки О (с вычетом самой этой точки) 
образуют дисперсивную (4) динамическую систему. Применяя нашу 
лемму, мы можем установить существование сечения класса Сг, кото­
рое оказывается компактным многообразием.

/ п
Теорема 3. Пусть R = у Sx? и пусть в некоторой окрестности 

асимптотически устойчивой точки О (0, 0, ..., 0) выполняются 
условия

2|/ ЪХ1 < kR <р (х^ х2, ..., хп) т, 

где т>0. Пусть q = mm(r, — 2 ), где означает целую 

часть дроби ™.
Мы утверждаем, что в области притяжения точки О (с вклю­

чением в нее самой точки О) существует функция v класса Cv 
удовлетворяющая уравнению
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и совпадающая на заданном сечении S области притяжения с за­
данной на S функцией ф(хь х2, ..., хп).

Следующий пример показывает, что константы т и k играют 
существенную роль для существования решения рассмотренного 
уравнения, принадлежащего достаточно высокому классу:

Эи ди , , п — х s-----у < + ku = 0. дх ду

Очевидно, решением этого уравнения, обращающимся в 1 на окруж­
ности л2+у2 = 1, будет функция и = (х2 + у2)*/2. При
функция и не дифференцируема в точке 0(0, 0), при k = 1 она диф­
ференцируема, но не принадлежит классу Сь при k > 1 функция и 
будет уже принадлежать классу

Следствие. Существует в области притяжения асимптоти­
чески устойчивой точки О стационарная положительно определен­
ная функция Ляпунова, принадлежащая классу Сг и имеющая 
отрицательно определенную производную по времени.

Этот результат является усилением теоремы Массера (в), обратив­
шего теорему Ляпунова об асимптотической устойчивости в стацио­
нарном случае. Для случая п = 2 подобное обращение было проведено 
И. Г. Малкиным (6).

Наряду с системой (1), рассмотрим теперь систему

+ П (3)

где — функции координат хь х2, ..., xw связанные неравенством

р/ S < т] (х1; х2,..., хп). (4)

Следующая теорема устанавливает грубость свойства асимптоти­
ческой устойчивости.

Теорема 4. Пусть особая точка 0(0, 0, ...,0) системы (1) 
является асимптотически устойчивой точкой.

Можно указать непрерывную функцию т)(хх, х2, ..., хп), положи­
тельную всюду, кроме точки О, и притом такую, что при выпол­
нении неравенства (4) точка О будет асимптотически устойчивой 
и для системы (3).

В доказательстве этого результата используется теорема 3 и теорема 
А. М. Ляпунова об асимптотической устойчивости (7).

Поступило
25 Ш 1950
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