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(Представлено академиком А. А. Скочинским 20 III 1950)

Рассмотрим сжатие цилиндра между двумя шероховатыми жестки­
ми плитами, если условие пластичности для материала цилиндра за­
дано в форме огибающей наибольших кругов напряжений или усло­
вием постоянства интенсивности касательных напряжений.

1. При сжатии цилиндрического образца между жесткими плита­
ми торцовые сечения и сечение на середине высоты образца остаются 
плоскими в процессе деформации. Предположим, что и все сечения, 
перпендикулярные образующей цилиндра, остаются плоскими в про­
цессе деформации.

Поместим начало координат на оси цилиндра на половине высоты 
и направим ось Z вверх. Обозначая перемещение вдоль оси Z через 
Uz и принимая во внимание сделанное замечание о характере дефор­
мирования, имеем

UZ^UZ^. (1)

Уравнения совместности деформаций в задаче с осевой, симмет­
рией имеют вид

деа ей — е,
+ -—- = о,дг г ’

д2е, дЧг (2)

дг2 'Гь дг2 дг дг '1

Принимая, как обычно, что материал в процессе пластической 
деформации несжимаем, имеем еще одно условие:

+ е0 + ег = 0. (3)

На основании зависимости Uz — U (?) имеем

Zz = Uz (z). (4)

Далее, интегрируя первое уравнение системы (2) с учетом урав­
нений (3) и (4), получаем

n = -^-^U'z^. (5)
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Но при г—»0 значение гг остается ограниченным, отсюда F (?) = 0. 
Таким образом, при сжатии цилиндра из несжимаемого материала 
между двумя жесткими плитами

= г9 = — ~ U, (?) (6)

и, следовательно, имеем условие

Or = сто. (7)

Интегрируя второе уравнение системы (2) с учетом соотношений (4) 
и (6) и определяя произвольные функции из условий симметрии, 
находим

Y«=-4 ^(z)r- (8)

2. Присоединяя найденное условие ог = (7) к уравнениям рав­
новесия и условию пластичности, получаем систему уравнений в на­
пряжениях.

На основании (7) уравнения равновесия упрощаются и будут:

д°г д'г: 
dr I- dz

(9)

c2-\- H I 
Or+H\

Условие пластичности примем в форме циклоидальной огибающей 
главных наибольших кругов напряжений*:

* Уравнение огибающей в форме циклоиды и выражения для компонент напря­
жений (11) предложены В. В. Соколовским (2).

+ 4^ = 4^ Sina(^2^ + у). (10)

Решения уравнения (10) можно принять в следующей форме:

= 4- [2 (5 + ?]) ± (sin 25 + sin 27J];
k <П)

= — J (cos 25 — cos 2tj).

Внося (11) в (9), получаем основную систему дифференциальных 
уравнений предельного равновесия:

sin 5 (sin 5 + cos 5 4- sin v) (sin r, — cos rt = 0,

Г Л , Г C ■ d^\ (12)
cos 5 Qsin 5 + cos 5 J — COS ( sin — cos tj ) =

= у (cos 25 — cos 2t)).

Уравнения характеристик для системы будут:
dz . r d^ 2sin у; sin (5 — r.)

= -d^=~--------4П------ ’ <13)

* - — 2singsin (g- 7j) /, 4\
• dr L dr sin 71 ' '
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. Уравнения (13) и (14) могут быть 
менным а и (к

преобразованы к новым пере-

г dr . - dz п cos^-sin? ^ = 0, дг . dz „cos х -5—Н sin г = О,‘ da 1 ‘da ’
d£ _ 2sin тд sin (£ — д) dr
dp r sin 5 <?P ’

dr, _  2sin 5 sin (5 — 7]) dr
da r sin r, da ‘

(15)

К уравнениям (15) применим метод численного интегрирования.
Постановка краевых задач для уравнений (15) ничем не отличает­

ся от изложенной В. В. Соколовским (’).
Заметим, что уравнения (13) 

и (14) имеют интеграл

но = Чо = consti,
Z = rctg^o + consta, 

2= — rctg7]0 + COnst3.
(16)

Сетка характеристических 
линий состоит из двух се­
мейств параллельных прямых 
(16). Компоненты напряжений 
будут

nr = SQ= Xrz = О, 

вг = k [2^0 + sin 2?0] - H, (17) 

и находится из условия

Н = k [2?0 - sin 2Ц. (18)

Напряженное состояние, соот­
ветствующее описанному част­
ному решению, имеет место в
областях, ограниченных боковой поверхностью цилиндра.

Принимая вместо условия (10) уравнение, выражающее постоянство 
интенсивности напряжений сдвига, приходим к системе уравнений:

+ sin 2ф ~ + cos2ip ~ = 0, dr ' r dr r дг

да , „ dtp . n dtp sin 2<?+ cos2? - sin 2?
(19)

Характеристики 
₽, будут:

системы (19), преобразованные к переменным а и

дг , ( , п\ дг дг , ( dr ,d^ = - tg^ + T;d₽’ d7 = -tg<<P-Tj^’ (20)

да dtp _  sin 2tp sin <p + cos <p dr 
dp dp 2r cos tp — sin tp dp’

da dtp _ sin 2cp cos <p — sin tp dr 
da ' da ' 2r cos tp -J- sin tp da ’

Уравнения (19) имеют частное решение <p = ф0 = 0 или тс/2 и 
w = const, аналогичное рассмотренному частному решению уравне­
ний (12).

На рис. 1 построена часть сетки линий скольжения и эпюры на­
пряжений аг и сг по сечению на половине высоты образца при сле- 
2 ДАН, т. 72, № 2 249 



дующих данных: радиус цилиндра Ro = 1 см, высота цилиндра 
h = 4 см, параметры прочности k = 360 кГ / см2, Н = 16 кГ / см2.

3. Выводы. Задача о сжатии цилиндра между жесткими плитами 
имеет значение при обработке результатов механических испытаний 
на сжатие.

Из приведенного решения следует, что напряженное состояние 
образцов является сложным. Определение предела прочности на 
сжатие по формуле

р„ __ разруш mi ч
авр — ' И

может привести к неверным результатам для образцов небольшой 
высоты. При увеличении высоты образца область одноосного напря­
женного состояния увеличивается и может распространиться на все 
поперечное сечение цилиндра, что будет иметь место при

/z>2/?octg^. (22)

Значение £0 дается уравнением (18).
Если условие (22) выполняется, то в серединном сечении образца 

напряженное состояние будет равномерным и, следовательно, для 
определения авр применима обычная формула.

Поступило
20 Ш 1950
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