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В этой заметке мы рассматриваем специальные классы континуаль­
ных алгебр (см. (х)). Для таких алгебр удается доказать ряд теорем, 
обобщающих соответствующие теоремы относительно группового 
кольца компактной коммутативной группы.

1°. Алгебру, построенную по структурной мере С (А, В, q), назовем 
нормальной, если между точками компакта Q можно установить взаим­
но-однозначное соответствие q->q*, переводящее борелевские мно­
жества в борелевские и такое, что (^‘)* — q, С (А, В, D} = С (D, В*, А) 
(А, В, D € [Q], q 6 Q)*

Из т (Q) т (Е) = С (Q,E, Q) = С (Q, Е", Q) = tn (Q) т (Е*) следует, что 
мультипликативная мера т инвариантна относительно*.

Каждая из алгебр 4° — 6° заметки (х) нормальна. В примере 4° 
нужно положить g* = g 1 (g 6 G), в примерах 5° и 6° q’ = q (q € Q).

2°. При любом D € [Q] С (A, B, D) = C (D, A*, B)^C (D, A*, Q) = 
= tn (D) tn (A*) =m {D} т (А), поэтому C (A, B,q)-^m (A) (A, B^ [Q], ^€Q).

С помощью этого неравенства из непрерывности композиции харак­
теристических функций ((хл * хв) (у) = С (А, В, q}) следует

Лемма. В нормальной алгебре композиция суммируемой функ­
ции с ограниченной непрерывна.

Следствие. В случае недискретного Q нормальная алгебра не 
содержит единицы.

Теорема 1. Нормальная алгебра обладает не более чем счет­
ным числом^ характеров, являющихся непрерывными эрмитовыми 
(х(?) — уАя*\ q € Q) ортогональными друг к другу функциями.

Доказательство. Для любых А, В € [Q] имеем

X (А) х (В) = (А, В, q) z (?) dq = ^х (7) dqC (А, В, Eq) =

= $ X (?) dqC (Eq, В*, A) = J (x * у-в^ (d) dq,
A

откуда
xWx(B) = (x* (B£[Q]). (1)

Непрерывность характера x следует из этого равенства и леммы. Эр- 
митовость характеров вытекает из справедливого при любом Е € [Q] 
равенства

Мы придерживаемся обозначений заметки (1), так что С (А, В, D) = С (А, В, q) dq.
D
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х(^) 5 1 х(0І2^ = $($х ОМ с E^'Mdq =

= 5 X № d9 ($xW dtC (Et, E, Eg) ) = 5 X (?) dq (^(t) dt C (Eq, E\ Et)) 

= ^dt(\z(q)dgC(Eg,E\Et^ I Х^)Г^.

Для доказательства ортогональности двух характеров х и 9 (х¥=®) 
выберем такое B6[Q], что х (В) =Д 0 (В) = 6 (В*);  тогда при помощи (1) 
получим

* Идея этого доказательства заимствована у Сегала Pj.

[хда — ©СВЭ] ^(t)Q{t)dt= J(X * *в-)Щ  W)df-\ (h ^B)Wt)dt =

= х(т)^С(£Т1В’Д)) W)dt- ^^d^C (Ex,B,t\(t)dt =

= J 0(0 dt x (0 dx C (Ex, B', Et))-^) dt ($9Д) dx C (ET, B, Et) ) = 0.

Следствие 1. Мультипликативная мера в нормальной алгебре 
единственна.

Следствие 2. Функции j(O = x(O^ lx(0l2^J 1 являются 

ортогональными идемпотентами алгебры (т. е. j*  j — j, j * j' = 0 при 
j /). Каждый другой идемпотент представим в виде конечной сум­
мы функций j(t).

Из эрмитовости характеров легко следует, что нормальная алгебра 
превращается в симметричное кольцо, если положить (Xe + x(t))*  = 
= Хе + х(Е).

3°. Если у нормальной алгебры отсутствует радикал, то ее харак­
теры образуют полную систему в L2. В общем случае структура ра­
дикала описывается следующей теоремой.

Теорема 2. Радикал нормальной алгебры совпадает с сово­
купностью элементов x^Lv для которых х * у при любом у^ L± 
служит аннулятором называется аннулятором, если z * и=0 
для любого u^L-^.

Доказательство*.  Достаточно показать, что каждый элемент 
из радикала R обладает указанным свойством. Пусть z(t)£R — в су­
щественном ограниченная функция; рассмотрим в Ь2 оператор Szx = 
= z*  х (хбЛ2); легко видеть, что он ограничен. Его спектр состоит 
только из нуля; в самом деле, при ХД=0 существует (z — ХеД1 =

1 1 / 1 \= у----у е, причем у удовлетворяет соотношению у — -^\У * 2 —F z/ 
Из этого соотношения и леммы заключаем, что у (t) ограничена, 
поэтому оператор Sj, (Syx=y*  х, xQL2) непрерывен в L2. Очевидно, 
(Sz — ХЕД1 = Sy — -у Е, таким образом, спектр Sz состоит из нуля, и, 
так как Sz нормален, то Sz — 0, т. е. z * ц = 0 для любого u^L2. 
В силу плотности L2 в в норме Lr это равенство имеет место для 
всех ибАр т. е. z— аннулятор. Пусть теперь хбR произвольно; если 
уД) ограниченная функция, то z = x * y£R и непрерывна, поэтому 
x*y*u  = z*u  = 0 при любом uf:^. Для завершения доказатель­
ства достаточно отметить, что ограниченные функции плотны в L±.

Из доказанной теоремы получаем следующий критерий полупро­
стоты.
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Для полупростоты нормальной алгебры необходимо и доста­
точно, чтобы она не содержала отличных от нуля аннуляторов.

4°. Будем говорить, что нормальная алгебра обладает полюсом о, 
если существует такая точка о б Q, что С (Л, В, о) = т (Д’ П В) для всех 
борелевских А, В.

Нетрудно убедиться, что для конечномерной нормальной алгебры 
полюс является единицей алгебры, лежащей в базисе.

Каждая из алгебр 4°—6°(1) обладает полюсом. В примерах 5° и 
6° полюсом служит точка +1, в примере 4°— единица группы.

Теорема 3. Нормальная алгебра с полюсом полупростая.
Доказательство. Пусть U • ^о — последовательность

сфер в Q, стягивающихся к полюсу о алгебры, а еп (t) — характери­
стическая функция сферы Un, деленная на т (Un). Для каждой в су­
щественном ограниченной функции f (q) и любого 4€[Q] имеем

(хл * еп) (q) / (q) dq = J / (?) dq C (A, Un, Eq) =

= -дЬт Sf dq c {Eq’= $(/ * Хл,) dt-
Un

В силу леммы (/ * хд»)(/) непрерывна по t, поэтому

^(хл * en)(q)f(q)dq----- > (f * хл.)(о) = [f(t) dt С(Е(, A", o) =

= ^f^dtm{Et[\ Д) = /(Д).

Из полученного соотношения заключаем, что х * еп слабо сходится 
в Lx к х для ступенчатых х (t). Так как ступенчатые функции плотны 
в Lv а || еп || = 1 (n = 1, 2,...), то эта сходимость имеет место для 
каждой суммируемой x(t). Пользуясь этим, покажем, что алгебра не 
содержит отличных от нуля аннуляторов.

Пусть х =1= 0 — аннулятор, по теореме Гана найдется функционал/ 
такой, что 7(х)=^=0. Вместе с тем 0 = 1 (х * еп)---- >/(х), что абсурдно.

//—>эо

Теорема доказана.
Отметим, что для того чтобы точка q0 € Q была полюсом нормаль­

ной полупростой алгебры, необходимо и достаточно выполнение ра­
венства х(?о) — 1 для всех характеров.

5°. Теорема 4. Если коэффициенты Фурье в существенном огра­
ниченной функции <р (t) (t € Q) при ее разложении по характерам 
нормальной алгебры с полюсом неотрицательны, то ряд Фурье 
сходится абсолютно и равномерно.

Доказательство теоремы ведется методом Рисса — Райкова (3, 4), 
причем позитивный функционал Е, участвующий в этом доказатель­
стве, строится по формуле

Е(Хе + х) = X || F || + Сх(Н<р(/)dt ( || F || = vrai max | ®(/) | , x^L^. 
J t^Q

Позитивность F следует из неравенства | /Дх) | II Е || F (х * х‘) 
(х € LJ, получаемого из легко проверяемого неравенства | F (х * у/*) |2 

х*) F (у * у*) (х,у € заменой у (t) на en(t) (см. доказатель­
ство теоремы 3) и переходом к пределу по п-^оо.

6°. Применяя теорему 4 к алгебре 5° (г), получаем обобщение тео­
ремы об абсолютной сходимости тригонометрического ряда Фурье 
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в существенном ограниченной функции с неотрицательными коэффи­
циентами Фурье на случай разложения по полиномам Лежандра.
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