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1. В приборах, измеряющих малые промежутки времени (хроно­
графы, электроотметчики), а также в некоторых других случаях в 
качестве регулятора применяют j пругую пружинящую пластинку, 
взаимодействующую с ходовым колесом^ (рис. 1).*

* Рисунок изображает положение ходового колеса и пружинящей пластинки в 
процессе работы регулятора (в момент соударения ходового колеса с пластинкой).

** Теория регулятора с пружинящей пластинкой, предложенная Дроздовым 
Г), неудовлетворительна, так как исходит из неправильных предпосылок о характере 
взаимодействия ходового колеса и пластинки.

*** От ранее рассмотренной задачи о часах Галилея — Гюйгенса (2) рассматривае­
мая здесь модель в динамическом отношении отличается такими особенностями: 
1) передача импульса происходит только один раз за период, 2) наличие собственного 
периода является здесь обязательным, 3) передача импульса происходит при соударе­
ниях под определенным углом.

В настоящей заметке дается тео­
рия такого регулятора на модели, 
учитывающей две степени свобо- .
ды **,  и находятся величины, харак- J уД 
теризующие периодическое движе- , с 
ние (координаты и скорости после- р/ 
импульсных состояний) и его устой- / 
чивость, а также зависимость пе- ’ КО А I/ 
риода от параметров регулятора. 
Полученные формулы могут слу- м
жить для’ расчета регуляторов с Рис 1
пружинящей пластинкой, а также 
позволяют исследовать динамику 
регулятора. В частности, в заметке показано, что для рассматривае­
мой модели при фиксированных значениях параметров возможны 
различные устойчивые периодические режимы***.

2. Описание динамической модели.. Пусть ходовое 
колесо осуществлено в виде бесконечной ленты, оснащенной зубцами, 
расположенными на равных расстояниях а, и приводимой в движение 
постоянным моментом, а пружинящая пластинка представлена балан­
сиром, двигающимся поступательно по направляющим под углом <р к 
направлению движения ленты ходового колеса и связанным с поло­
жением равновесия пружиной (рис. 2). Будем считать, что в проме­
жутках между ударами ходовое колесо имеет один выдвинутый 
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зубец и этот зубец после удара мгновенно убирается (при помощи 
механизма, который нет надобности рассматривать), а вместо него 
появляется зубец, следующий за ним по порядку. Движение зубцов 
ходового колеса и движение балансира будем считать прямолинейным 
и введем координаты х и у, расположив ось х по направлению дви­
жения балансира, а ось у — по направлению движения зубцов ходо­
вого колеса (направления осей х и у образуют угол <р). Общее начало 
отсчета пусть совпадает с положением равновесия балансира.

Уравнения движения для промежутков времени между ударами 
будут:

.. dy п dy dx , • dx • ...
M~dt=P> Чі=У’ ^^=~^x-bx, -^=х*.  (1)

* Фазовая переменная х динамической модели есть линейная скорость „конца" 
пружинящей пластинки (пренебрегая изменениями скорости пластинки в точке удара, 
происходящими от смещения точки удара по длине пластинки из-за несовпадения 
траекторий конца зуба ходового колеса и конца пластинки); у — линейная ско­
рость конца зуба ходового колеса; М—приведенная к координате у масса ходового 
колеса; Р—обобщенная сила, приводящая ходовое колесо во вращение; т — приве­
денная к координате х масса упругой пластинки (балансира); b — коэффициент вязкого 
трения; х0 — коэффициент упругости плистинки.

** Угол между направлениями скоростей зуба и пластинки в точке удара в про­
цессе работы регулятора не остается неизменным. В динамической модели этот 
угол принимается постоянным, равным установочному углу ср (рис. 1).

Будем удары считать мгновенными; тогда доударные скорости 
х, у будут связаны с послеударными скоростями х, у соотношения­
ми:

х = а.х + а(1 — а)у, у = fix + (1 — afi) у, (2)

Рис. 2

Р/2аМы2— р, ыі =т. Точечное

где с = cos <р, 3 = та (1 + k)'M + та2, 
а = аЗ — k и k — коэффициент восста­
новления **.

3. Точечное преобразова­
ние. Уравнения (1) и (2) позволяют 
написать точечное преобразование £2 
для переходов между последователь­
ными послеударными состояниями 
Uo. Уо(^хо1а), х0, у'о} и {xlt yt 
(^х^а), xlt у^}, порождаемыми по­
следовательными ударами зубцов хо­
дового колеса о балансир. Положим: 
x0/m = x, bl2m = h, — h2 = w, 
x[a = xlaas = £, у!а<л = ?], Щы = H, 

преобразование £2 примет тогда вид

Si = ае~Нх [Со (cos т — Hsin т) — <о (1 + Н2) sin т] + а (1 — а) (2ра + т]0), 
41 = №~Н' [?о (cos т — Н sin т) — £0(1 + №)sinT] + (1 — 0-3) (2ра + ^), (3) 

[Соsin ~ + ^0 (cos т + Н sin т)],

где т — наименьший положительный корень уравнения

в~Нх [Со sin т + с0 (cos т + Н sin т)] — (рх2 — 1) а — — £0 = 0.

Преобразование (3) содержит пять существенных параметров: а, 3, 
р, Н, °-
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4. Периодическое решение. Для неподвижной точки 
точечного преобразования (3), определяемой условием ^ = ^0, 

= ^о> ?1 — ^о и соответствующей периодическому решению системы 
(1), (2), имеем:*

* В работе не затрагивается вопрос о возможности других рекуррентных режи­
мов (например режимов, соответствующих так называемым периодическим точкам 
преобразования).

** Параметры k и J = т/М входят в уравнение через а и р.

Л а . аВ —2а fi • _ 1 fl ? 0 ~ °0 9 Sin 6 ...
4о — -0-Н------- р---- Р®> ^о— 9 Р®, 4о— р ch HQ — cos 0 ’

где 6 — положительный корень уравнения

по Го О , /1 . ~/7 sin 0 — cos 0 "1 „Р^ [2а - ар + (1 - а)------ сЬЯе- соТб----- J = (5)

Точечное преобразование (3) будет иметь столько неподвижных точек, 
сколько положительных корней имеет уравнение (5).

Неподвижная точка и соответствующее периодическое решение 
будут устойчивы (т. е. все три корня соответствующего уравнения в 
конечных разностях будут по модулю меньше единицы), если выпол­
няются условия:

А = ар (2а — ар)-|г + аЗ (1 — а) [2 (1 + ах) + ^0ФХ] > 0,

В = [а2 + (а - ар)2] (ах + bj + 2 [1 + (1 - ар)2] - 2g (1 - а)2 (1 + Ох) + 
+ [2(1- а)2 - (1 - ар)2 - 1] (1 + aj + ар (1 - а) [2а0 + g0+2] > 0, (6)

С = 4[1 + (а— ар)2 ^] -5>0,

D = 2 - + (а _ стр)2 Ьг - 2 (а - аР)4 Ь^ > 0,

где 11g = е"2Н0 — 2е Н0 cos 9 + 1, ^ = е 2Н\ а0= е но sin 0/0, 1 + ах = 
= 1 — е~нв (cos 0 + Hsin 0), 01+^1 = е~2нв + е-"0 (cos 0 — Я sin 0),
Фх = е~™ [4Не~н& — (1 - Н2) (1 - е~2Нв) sin 0 - 2Я (1 + е~2Н6) cos 0], 
ф2 = е~нв [(1 -№)(! + е~2Нв) sin 0 + 2Я(1 - е-2"0) cos 0].

5. Уравнение (5) связывает период 0 (безразмерное время между 
двумя последовательными ударами зуба ходового колеса о пластинку) 
с безразмерными параметрами//,/?, J, а, ^,  характеризующими соот­
ветственно: трение в системе, вращающий момент, отношение момен­
тов инерции, установочный угол и коэффициент восстановления при 
ударе. Уравнения (4) и (5) совместно с условиями устойчивости (6) 
позволяют исследовать возможные режимы работы регулятора и зави­
симость этих режимов от параметров.

**

Выводы. 1°. При отсутствии трения в системе (при Я = 0) и 
фиксированных значениях остальных параметров существует единст­
венная неподвижная точка преобразования (3), которая может быть 
устойчивой или неустойчивой.

2°. При И = 0 взаимодействие ходового колеса и пластинки в 
устойчивом режиме происходит на встречных ударах.
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3°. При /7 = 0 внутри каждого интервала значений параметра 9 
соответствующего неустойчивым режимам, содержится либо период 
собственных колебаний пластинки (9 = 2тг), либо его целые кратности 
(9 = 2/т, п = 2, 3,...).

Наличие трения (//>0) существенно влияет на поведение системы
4°. При фиксированном//>0 и фиксированном k (0<£<1) можно 

так выбирать фиксированные J, с и р, что преобразование (3) будет 
иметь более одной устойчивой неподвижной точки. J

Режим, в котором будет работать регулятор при наличии несколь­
ких устойчивых периодических решений, будет зависеть от началь­
ных условий. При случайном изменении начальных условий (например 
при точке или сотрясении) регулятор может перескакивать с одного 
режима на другой.

5°. При //>0 взаимодействие ходового колеса и пластинки в 
устойчивом режиме может происходить либо на встречных, либо на

Рис. 3

подталкивающих ударах.
6°. Для фиксированного Я>0 усло­

вие cos 6 //sin 9 — е~Я9Д>0 выделяет 
интервалы значений 0 (содержащие либо 
период собственных колебаний пластин­
ки, либо его целые кратности), внутри 
которых при выполнении условий (6) 
система может работать в режиме под- 
талкивающих ударов.

7°. При /7=0 моменты на ходовом 
колесе, вычисленные по уравнению (5), 
обратно пропорциональны квадратам пе- 

в риодов. При 77 >0 уклонение от этого 
закона будет тем сильнее, чем ближе 
период автоколебаний к периоду собст­
венных колебаний пластинки или к его 
целой кратности.

6. На рис. 3 сверху приведены кри­
вые зависимости периода от вращаю­

щего момента, построенные для фиксированных значений па- 
раметров (J=1/75, <р = 45°, £ = 0,5, /7 = 0 и Я = 0,001) по уравне­
нию (Ь). Жирными линиями выделены области устойчивости. Снизу 
для Н = 0,001 в том же масштабе по оси 9 построены кривые зависи­
мости от периода 9 доударной скорости пластинки (^) и места удара 
(Q. Участки АВ и CD на устойчивой части кривой (р, 9) соответст­
вуют подталкивающим ударам (^>0). Чертеж иллюстрирует выводы. 
Из характера кривой (р, 9) видно также, что, увеличивая р, можно 
перейти в такую область значений параметров, где существует только 
одно устойчивое периодическое движение.

7. Наличие нескольких устойчивых режимов можно наблюдать 
экспериментально на простых моделях при соответствующем выборе 
величины вращающего момента. Перескоки с одного режима на 
другой вызываются, например, затормаживанием или подталкиванием 
ходового колеса рукой. Легко удается наблюдать до четырех различ­
ных устойчивых режимов.
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