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Введение 
Калориметрические сенсоры мощности микроволнового излучения являются акту-

альными объектами разработки и широко используются во многих сферах человече-
ской деятельности, поскольку они играют ключевую роль в прецизионных измерениях 
мощности микроволнового излучения. Высокая точность и стабильность этих сенсоров 
делают их востребованными в различных областях науки и техники, включая радиофи-
зику, телекоммуникации, радиолокацию, медицинскую диагностику [1, 2], метрологию 
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и контроль параметров высокочастотных излучателей [1–3], а также при анализе физи-
ческих и химических свойств материала в промышленности, к примеру, для обнаруже-
ния фальсификации бензина и масла [1–3], в космических технологиях, например,  
в различного рода спутниках [2, 4], при исследовании плазмы [5] и др. 

Современные тенденции развития сенсорных технологий направлены на повыше-
ние чувствительности, миниатюризацию, улучшение тепловых характеристик и сни-
жение энергопотребления современных сенсоров, что делает актуальными исследова-
ния новых конструктивных решений и материалов для изготовления сенсоров. 

Сравнивая с другими сенсорами мощности микроволнового излучения, калори-
метрические сенсоры являются наиболее распространенными [6, 7]. Это связано с их 
высокой стабильностью и точностью измерений на высоких и сверхвысоких часто- 
тах [7, 8]. Калориметрические сенсоры разделяются на две большие группы в зависи-
мости от способа измерения выделяемого тепла [7, 9]. К первой группе относятся ка-
лориметры с переменной температурой, где мощность определяется по изменению 
температуры рабочего тела калориметра. Вторая группа – это калориметры с постоян-
ной температурой, где в процессе измерений температура калориметрической систе-
мы не изменяется. Калориметры с переменной температурой по конструктивному  
исполнению разделяют на статические – «сухие» и проточные – «жидкие» калоримет-
ры [7, 9, 10]. В статических калориметрах рабочее тело преобразователя, где энергия 
микроволновых колебаний превращается в тепловую, неподвижно и в процессе изме-
рений микроволновой мощности не изменяет форму и физические свойства. Рабочим 
телом для статических калориметров может служить вода, твердые объемные погло-
тители, тонкопленочные поглотители. В проточных «жидких» калориметрах содер-
жится жидкость, играющая роль переносчика тепла от рабочего тела во внешнюю 
среду. Проточные калориметры имеют много недостатков, которые связаны, в первую 
очередь, с присутствием в их конструкции жидкости. 

Кроме того, следует разделить калориметрические сенсоры по типу микроволно-
вого тракта на коаксиальные, трубчатые и полосковые. 

Таким образом, можно отметить, что все калориметрические сенсоры основаны 
на преобразовании энергии микроволнового излучения в тепловую с последующим 
измерением количества тепла, выделенного в рабочем теле преобразователя. Сущ-
ность метода измерения поэтапно заключается в следующем [7, 9]: 

1. С помощью поглотителя принимается входной сигнал. Роль поглотителя, как 
ранее было упомянуто, могут играть вода (жидкие среды), твердые объемные и тон-
копленочные вещества. 

2. Тепло преобразуется в измеряемую величину с помощью фиксации изменения 
температуры термочувствительного элемента. 

3. Измеряется температура и вычисляется мощность. Для данных преобразовате-
лей в идеальных случаях свойственно соотношение: 
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4. Выводится результат. 
Данный метод имеет ряд преимуществ, таких как легкая калибровка, точность 

измерения, широкий частотный диапазон. Однако присутствуют и недостатки в виде 
медленного отклика, наличия габаритной термостабилизационной части для повы-
шения чувствительности и компенсации температуры окружающей среды [7, 8, 11]. 

Цель настоящей работы – рассмотреть конструктивные и функциональные осо-
бенности современных типовых тонкопленочных терморезистивных трубчатых ка-
лориметрических сенсоров. Провести анализ их достоинств и недостатков с точки 
зрения эффективности, экономичности, уровня технической реализации и техноло-
гичности, а также выбрать оптимальные технические решения для проектирования  
и разработки тонкопленочного терморезистивного трубчатого калориметрического 
сенсора. 

Конструктивные и функциональные особенности современных тонкопленоч-
ных терморезистивных трубчатых калориметрических сенсоров 

В работе [11] представлена конструкция тонкопленочного терморезистивного 
трубчатого калориметрического сенсора на основе кремниевой подложки, платино-
вых терморезисторов и тонкой никелевой пленки. Конструкция данного сенсора со-
стоит из алюминиевого корпуса и двух впаянных в него волноводов. Внутри корпуса 
для термостабилизации размещен теплоизоляционный наполнитель. Волноводы, по-
золоченные внутри, изготовлены из никелевого сплава с низкой теплопроводностью, 
толщина стенок – 70 мкм, длина волновода – 24 мм. Малая толщина волновода тре-
буется для высокой теплопередачи и низкой теплоемкости. Волновод имеет клино-
видную форму, его конец зарезан под углом в 10°. Срез нужен для установки на него 
нагрузки с терморезистором и нагревателем, а угол выбран таким образом, чтобы 
увеличивался коэффициент стоячих волн. Нагрузка представляет собой кремниевую 
пластину толщиной 400 мкм, на поверхность которой нанесена тонкая металличе-

ская пленка никеля, имеющая поверхностное сопротивление .
кварат

Ом100
 С обратной 

стороны кремниевой пластины наклеены с помощью эпоксидного клея платиновые 
терморезисторы, выполняющие роль нагревателя и сенсора. Закрывается корпус 
медной крышкой, а выводы сенсора и нагревателя припаяны к контактам печатной 
платы. Схема установки изображена на рис. 1. 

  

Рис. 1. Схема конструкции сенсора Erickson на основе кремниевой подложки,  
платиновых терморезисторов и тонкой никелевой пленки [11, 12] 
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Данная конструкция отличается простотой, высокой чувствительностью и скоро-
стью измерения, широким диапазоном измеряемых частот, предусматривает функ-
ции разогрева за счет нагревателя, вследствие чего снижается влияние температуры 
окружающей среды. В приведенной конструкции имеется улучшенная термостаби-
лизация за счет наличия в сенсоре теплоизоляционного наполнителя. Недостатками 
показанной конструкции являются высокая стоимость за счет использования плати-
ны и золота, большие размеры сенсора, что снижает скорость измерения при малых 
измеряемых мощностях. 

Сенсор в работе [13] представляет собой следующую конструкцию. На кварце-
вую подложку напыляют тонкую пленку титана. Номинальная толщина пленки со-

ставляет 15,5 нм, а ее поверхностное сопротивление равно .
кварат

Ом27
 В рассматривае-

мой конструкции титановая пленка является термочувствительной и соединена  
с контактными площадками, покрытыми золотом толщиной 100 нм. Для защиты  
от воздействий окружающей среды контактные площадки покрывают 50 мкм поли-
имида. Указанная конструкция представлена на рис. 2. 

 

Рис. 2. Схема конструкции сенсора на основе кварцевой  
подложки и тонкой пленки титана [13] 

Данный сенсор имеет более высокую скорость измерения при малых мощностях, 
меньшие размеры и вес, чем конструкция Erickson [11], отличается простотой, являет-
ся более экономичным и технологичным. Однако у этого сенсора есть и недостатки: 
использование пленки титана вместо платинового терморезистора повышает тепло-
проводность, уменьшает теплоемкость устройства, также снижается точность измере-
ния, отсутствует химически инертный материал на активном слое титана (например, 
полиимид), из-за чего возникает риск окисления пленки титана под действием влия-
ния окружающей среды, нет функции нагрева для исключения влияния температуры 
окружающей среды, не имеется решения термостабилизации сенсора. 

Известна еще одна конструкция тонкопленочного калориметрического сенсора [14], 
схема которой дана на рис. 3. В такой конструкции с помощью DC-магнетрона на стек-
лянную подложку диаметром 100 мм и толщины 400 мкм распыляют алюминий и сплав 
WTi10%. Алюминиевая пленка была удалена частично, как показано на рис. 3. Далее  
с помощью барьерного анодирования образован поглотительный слой WTi, имеющий 

сопротивление .
кварат

Ом105
 На оставшейся половине подложки создавалась столбиковая 

тонкопленочная структура путем пористого анодирования и реанодирования. После 
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химической планаризации на поверхности анодного оксида алюминия формировали  
два прямоугольных никелевых контакта (отмеченная структура выступала в качестве 
термочувствительного элемента). 

 

Рис. 3. Схема конструкции сенсора  
на основе сплава WTi и алюминия [14] 

Отмеченная конструкция имеет высокий температурный коэффициент сопро-
тивления, работает в широком диапазоне частот микроволнового излучения, облада-
ет малыми размерами, может быть встроена в современные СВЧ-приборы, так как 
технологические процессы и материалы для ее изготовления широко используются 
на отечественных предприятиях микроэлектроники. К недостаткам данной конст-
рукции можно отнести отсутствие термостабилизирующей части для компенсации 
температуры окружающей среды. 

В работе [15] представлена конструкция многослойного тонкопленочного трубоч-
ного калориметрического сенсора на кремниевой пластине. Сенсор представляет собой 
четыре слоя, находящихся на кремниевой пластине толщиной 200 мкм, выполняющей 
роль поглотителя. Первый и последний слой – это изолирующий слой полиимида тол-
щины 50 мкм. Кроме того, на поверхности пластины сформирован изоляционный SiO2 
толщиной 1 мкм. Четвертым слоем является тонкая платиновая пленка, которая служит 
датчиком температуры и имеет форму меандра. Электроды, соединенные с платиновой 
пленкой, покрыты тонкой пленкой золота толщиной 100 нм и располагаются в четвер-
том слое вместе с полиимидом, на поверхность которого устанавливается волновод, за-
пиленный под определенным углом. Описанная конструкции приведена на рис. 4. 

 

 

Рис. 4. Конструкция сенсора на основе кремниевого 
 поглотителя и платинового меандра [15] 
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Несмотря на высокую практичность и хорошую проработку, конструкция имеет 
ряд значительных недостатков, например, высокие теплопотери из-за отсутствия те-
плоизоляции, отсутствие нагревателей или иных решений, способных устранить 
влияние окружающей среды на результат измерения и решить проблему теплового 
равновесия. Также к ее недостаткам можно отнести высокую стоимость изготовле-
ния из-за использования платины в качестве термочувствительного элемента и золо-
та – как контактного слоя. Кроме того, эта конструкция обладает высоким временем 
отклика на частотах 110–170 ГГц. 

Заключение 
В настоящей работе представлен анализ конструктивных и функциональных осо-

бенностей четырех наиболее актуальных тонкопленочных трубчатых калориметриче-
ских сенсоров микроволнового излучения. Анализ их достоинств и недостатков с точки 
зрения эффективности, экономичности, уровня технической реализации и технологич-
ности позволил выделить оптимальные технические решения для проектирования  
и разработки тонкопленочного терморезистивного трубчатого калориметрического 
сенсора: 

1. Термостабилизация. Не все представленные конструкции имеют решения в об-
ласти теплоизоляции и термостабилизации, что делает невозможным применение 
данных конструкций при нестабильных условиях окружающей среды. Рекомендуется 
использовать в конструкции нагревательный или термостабилизирующий элемент,  
а также теплоизоляцию. 

2. Климатическая и коррозионная защита. В представленных конструкциях  
в большинстве своем присутствует защитная полиимидная или оксидная пленка. Без 
данной пленки сенсор подвержен окислению со стороны окружающей среды и имеет 
сниженный срок эксплуатации, а к тому же требует соблюдения определенных усло-
вий эксплуатации. Можно предложить внешние слои сенсора пассивировать защит-
ной пленкой.  

3. Стоимость. В некоторых сенсорах в качестве термочувствительного элемента 
выступают платиновые терморезисторы и золотые контактные слои, что увеличивает 
затраты на их производство. Рекомендуется разрабатывать сенсор из экономических 
и технологически доступных материалов, не использовать экзотические, дорого-
стоящие оборудование и технологические операции. 

4. Габариты. Можно рекомендовать применение в процессе изготовления мик-
ро- и наноструктурирования, чтобы сенсор обладал минимальными размерами и был 
совместим с большим количеством волноводов, корпусов и конструкций. 

В качестве оптимальных технических решений для проектирования и разработки 
тонкопленочного терморезистивного трубчатого калориметрического сенсора следует 
использовать полиимид или оксидную пленку как защитный слой, нагреватель и теп-
лоизоляционный наполнитель для термостабилизации, технологичные, экономичные 
и эффективные материалы для термочувствительного элемента и поглощающего слоя 
на основе пористой пленки оксида алюминия с наноструктурированным столбиковым 
оксидом сплава WTi10%  [16] или ниобия [17]. 
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