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Представлены результаты исследований влияния оксида никеля и омедненного олова на трибо-
технические и механические характеристики самосмазывающихся композитов на основе порошковой 
системы «медь – омедненный политетрафторэтилен – комбинированный углеродный наноструктур-
ный наполнитель». Проведен анализ свойств указанных композиционных материалов с дополнитель-
ным содержанием от 0,5 до 8 мас. % оксида никеля и от 0,5 до 8 мас. % омедненного олова. Установ-
лено, что введение 4–6 мас. % оксида никеля и 3–5 мас. % омедненного олова способствует 
формированию порошковых самосмазывающихся металлополимерных композитов с коэффициентом 
трения 0,11–0,13, интенсивностью изнашивания 0,07–0,08 мкм/км, микротвердостью 920–1000 МПа  
и пределом прочности при сжатии 164–169 МПа. Отмечено, что совокупное действие твердых дис-
персных компонентов стабилизирует процесс трения и улучшает эксплуатационные характеристики 
композиционного материала.  
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The article presents the results of studies of the influence of nickel oxide and copper-plated tin on  
the tribotechnical and mechanical properties of self-lubricating composites based on the powder system 



МАТЕРИАЛОВЕДЕНИЕ 35

“copper - copper-plated polytetrafluoroethylene - combined carbon nanostructured filler”. The properties  
of these composite materials with an additional content of 0.5 to 8 wt. % nickel oxide and 0.5 to 8 wt. % 
copper-plated tin were analyzed. It was found that the introduction of 4–6 wt. % nickel oxide and 3–5 wt. % 
copper-plated tin facilitates the formation of self-lubricating metal-polymer composite powders with  
a friction coefficient of 0.11–0.13, a wear rate of 0.07–0.08 μm/km, a microhardness of 920–1000 MPa, and 
a compressive strength of 164–169 MPa. The combined effect of the solid dispersed components stabilizes 
the friction process and improves the performance characteristics of the composite material. 

Keywords: powder self-lubricating composite material, friction coefficient, wear rate, compressive 
strength, microhardness. 
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Введение 
Процессы трения сопряженных поверхностей деталей и сопровождающий их из-

нос являются причиной приблизительно 85 % неисправностей машин и механизмов 
различного функционального назначения, а затраты на ремонт и техническое обслу-
живание могут в несколько раз превышать их стоимость: например, в 6 раз – для ав-
томобилей и в 8 раз – для станков [1]. Необходимо отметить, что промышленные 
предприятия разных стран несут значительные финансовые затраты, связанные с ре-
монтом и техническим обслуживанием промышленного оборудования. Согласно ис-
следованию, представленному в [2], в Китае затраты на техническое обслуживание  
и ремонт промышленного оборудования, вышедшего из строя в результате изнаши-
вания трущихся поверхностей, составляют 15 % от себестоимости производимой 
продукции. А общие экономические потери, связанные с трением и износом при до-
быче полезных ископаемых, в мире составляют около 210 млрд евро в год, из кото-
рых 27 % приходится на производство запасных частей, вышедших из строя [3]. 

Представленные данные убедительно свидетельствуют о высокой экономиче-
ской значимости внедрения эффективных путей повышения износостойкости узлов 
трения. Выполнение этой задачи требует комплексного подхода, сочетающего опти-
мизацию конструктивных параметров узлов трения и разработку материалов с по-
вышенными триботехническими и физико-механическими характеристиками. Од-
ним из перспективных направлений в данной области исследований является 
разработка порошковых композиционных материалов на основе металлической мат-
рицы, способных обеспечивать требуемый комплекс эксплуатационных свойств. 

В данном контексте также можно выделить, что разработка и промышленное 
внедрение таких композитов представляются не только актуальной научной задачей, 
но и стратегическим направлением для решения проблем, связанных с повышением 
ресурса и надежности машин и механизмов в различных отраслях техники [4–6]. 

Цель настоящего исследования заключается в исследовании влияния содержания 
оксида никеля и омедненного олова на триботехнические и механические характери-
стики порошковых металлополимерных самосмазывающихся композитов. 

Характер влияния дисперсных компонентов на формирование свойств по-
рошковых металлополимерных самосмазывающихся композитов 

Материалы на основе меди получили широкое распространение в связи с их вы-
сокими антифрикционными свойствами, обуславленными образованием на поверх-
ности меди износостойких оксидных пленок, преимущественно состоящих из Cu2О  
и CuO. Такие пленки образуются в результате гетерогенных реакций окисления мед-
ной поверхности при контакте с кислородом воздуха. Механизм их связан с сочета-
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нием трех функциональных эффектов. Во-первых, оксидный слой выполняет барь-
ерную функцию, предотвращая прямой металлический контакт меди с контртелом  
и тем самым снижая энергию адгезии и вероятность развития адгезионного износа. 
Во-вторых, в условиях повышенных контактных нагрузок происходит микроотслаи-
вание оксидного покрытия с образованием мелкодисперсных частиц, которые дейст-
вуют по принципу твердой смазки, уменьшая коэффициент трения и стабилизируя 
процесс скольжения. В-третьих, благодаря высокой химической активности меди  
в окислительной среде, поврежденные участки оксидного слоя быстро восстанавли-
ваются за счет вторичного окисления, что обеспечивает эффект динамической само-
смазываемости.  

Следует подчеркнуть, что медь обладает хорошей пластичностью, высокой элек-
тропроводностью и относительной дешевизной [7]. В работах [8, 9] описаны пре-
имущества использования медных электролитических стабилизированных порошков 
при создании композитов для производства изделий триботехнического назначения.  
В данных публикациях отмечается, что медные порошки марок ПМС-1 и ПМС-В 
способны обеспечить высокий уровень триботехнических и физико-механических 
характеристик формируемых изделий, обладают насыпной плотностью до 3 г/см3  
и хорошей текучестью. В работе [8] уточняется, что одним из наиболее приемлемых 
для использования в качестве материала матрицы при получении композиционных 
материалов методом электроконтактного спекания является порошок меди марки 
ПМС-1, имеющий температуру начала процесса окисления около 365 °С и конца 
процесса окисления – около 755 °С. Указанные свойства обеспечили эффективное 
применение композиционных материалов на основе меди в узлах трения машин  
и механизмов, а также в электротехнике в качестве скользящих токосъемных кон-
тактов. 

В настоящее время с целью снижения износа трущихся металлических поверх-
ностей большое распространение получили жидкие смазки. Однако их применение 
не всегда целесообразно, так как значительно усложняет конструкцию узлов трения  
и увеличивает их стоимость. В условиях, когда невозможно или нежелательно ис-
пользовать жидкие смазочные материалы, стали активно внедрять самосмазываю-
щееся материалы. 

Самосмазывающиеся композиты на основе меди отлично подходят в качестве 
подшипников скольжения, например, на транспорте, в электронике и авиации благо-
даря их высокой теплопроводности, устойчивости к коррозии и хорошим смазочным 
свойствам [10]. В процессе трения медная матрица благодаря своей высокой пла-
стичности и низким значениям твердости способна перераспределять контактные 
напряжения, ограничивая тем самым локальный перегрев трибоконтакта, что в сово-
купности повышает износостойкость композита. 

Высокие триботехнические характеристики композиционных материалов на ос-
нове меди при работе в режиме самосмазывания могут быть получены при введении 
наполнителей в виде твердых смазок. Наиболее широкое применение в качестве 
твердых смазок порошковых самосмазывающихся композитов на основе медной 
матрицы получили оксиды металлов, мягкие металлы, а также полимерные и угле-
родные материалы [11, 12].  

В последние годы углеродным наноразмерным материалам уделяется значитель-
ное внимание благодаря уникальному сочетанию физико-механических и триботех-
нических характеристик, включая высокую теплопроводность и низкий коэффици-
ент трения. Особое место среди углеродных наноразмерных материалов занимают 
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наноструктуры углерода: углеродные нанотрубки (УНТ) и луковичные нанострукту-
ры углерода (ЛНУ). Введение в состав композиционных материалов УНТ и ЛНУ по-
зволяет снизить коэффициент трения композитов как за счет качения отдельных на-
ноструктур углерода, действующих в качестве подвижных элементов, так и за счет 
их скольжения по поверхности микровыступов [13]. При этом введение значитель-
ных объемов УНТ и ЛНУ нежелательно из-за возможной агломерации наноструктур 
углерода [14]. Проведенные исследования показали, что армирование углеродными 
нанотрубками порошковой металлической матрицы улучшает триботехнические 
свойства формируемых композитов [15–17]. 

Наиболее распространен среди полимерных наполнителей самосмазывающихся 
композиционных материалов политетрафторэтилен (ПТФЭ), обладающий одним из са-
мых низких коэффициентов трения среди известных твердых материалов и обеспечи-
вающий улучшение износостойкости за счет образования на поверхности трения тонкой 
пленки, предотвращающей прямой контакт металлических поверхностей. При этом 
ПТФЭ обеспечивает самосмазывание при температурах до 260 °C, обладает низкой ад-
гезией к большинству материалов, что предотвращает налипание частиц и продуктов 
износа на поверхности трения [18]. 

Композиционные материалы на основе трехкомпонентной порошковой системы 
«медь – ПТФЭ – наноструктуры углерода», полученные методом электроконтактно-
го спекания, достаточно исследованы и используются для изготовления деталей  
узлов сухого трения, например, вкладышей подшипников скольжения и антифрик-
ционных втулок [12]. Однако высокая пластичность данных композитов [19] ограни-
чивает их применение нагрузками до 1,5 МПа и препятствует достижению высо- 
ких нагрузочных характеристик. Таким образом, разработка многокомпонентных 
самосмазывающихся композиционных материалов на основе порошковой системы  
«медь – ПТФЭ – наноструктуры углерода» путем введения дополнительных анти-
фрикционных и упрочняющих компонентов, обеспечивающих повышение нагрузоч-
но-скоростных характеристик и быструю приработку к сопряженной поверхности 
контртела, является актуальной задачей для современного трибоматериаловедения. 
При этом вводимые компоненты не должны существенно удорожать получаемые 
композиты и быть дефицитными.  

Повышение нагрузочно-скоростных характеристик композиционных материа-
лов требует введения дополнительных компонентов, увеличивающих их прочност-
ные свойства. В качестве одного из таких компонентов целесообразно использо-
вать порошок оксида никеля, введение которого повышает твердость и предел 
прочности при сжатии формируемых порошковых композитов. С другой стороны, 
введение оксида никеля может приводить к ухудшению характеристик трения  
и изнашивания самосмазывающихся композиционных материалов на основе по-
рошковой системы «медь – ПТФЭ – наноструктуры углерода». В этой связи целе-
сообразно введение мягкого металла, способного взаимодействовать с металлом 
матрицы, например омедненного олова, что позволит улучшить триботехнические 
характеристики композиционных материалов на основе порошковой системы 
«медь – ПТФЭ – наноструктуры углерода» в присутствии оксида никеля. При этом 
добавление олова в порошковые композиционные материалы на основе меди обес-
печивает быструю приработку сопряженных поверхностей трения. Олово, являясь 
мягким металлом, обладает хорошей пластичностью и низкой температурой плав-
ления (232 °C), что способствует формированию плотной структуры самосмазы-
вающихся композитов на основе меди [20].  
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Необходимо отметить, что использование при получении порошковых компози-
ционных материалов для узлов сухого трения исходных порошковых компонентов, 
плакированных металлом матрицы, позволяет ввести в состав материала значитель-
но большее количество дисперсных антифрикционных наполнителей при сохране-
нии требуемых значений механических характеристик спеченной матрицы [21]. По-
лученный эффект можно объяснить тем, что частицы плакированного наполнителя  
в меньшей степени экранируют металлические частицы матрицы, что содействует 
образованию максимального количества металлических контактов как между части-
цами металлической матрицы, так и между частицами матрицы и частицами дис-
персных наполнителей. В результате формируется сплошной металлический каркас 
композиционного материала, в котором частицы антифрикционных наполнителей 
распределены в виде изолированных включений.  

Материалы и методика исследования 
В работе в качестве металлической матрицы использовался порошок меди ПМС-1 

ГОСТ 4960-2017. Как упрочняющие наполнители применялись порошок оксида нике-
ля ГОСТ 17607-72 крупностью 25–50 мкм и смесь наноструктур углерода, содержа-
щая 20 % УНТ и 80 % ЛНУ в виде комбинированного углеродного наноструктурного 
наполнителя. Антифрикционными наполнителями выступали гранулы омедненного 
ПТФЭ крупностью 50–200 мкм при содержании в них меди 50–60 мас. % и гранулы 
омедненного олова крупностью 45–63 мкм при содержании в них меди 10–20 мас. %. 
Гранулы антифрикционных наполнителей изготавливались из порошков ПТФЭ  
ГОСТ 10007-80 и олова марки ПО3 ГОСТ 9723-73. Плакирование частиц наполните-
лей осуществлялось путем химического осаждения меди из раствора медного купоро-
са. В качестве базового состава применялась порошковая система «медь – омеднен-
ный ПТФЭ (6 мас. %) – комбинированный углеродный наноструктурный наполнитель 
(0,07 мас. %)».  

Образцы получали методом электроконтактного спекания, обеспечивающим бы-
струю консолидацию исходных компонентов за счет локального нагрева током вы-
сокой плотности. Формировались они путем прессования при давлении 400 МПа. 
Спекание производилось посредством пропускания электрического тока плотностью 
400 А/мм2 в течение 1,5 с.  

Триботехнические испытания проводили в режиме самосмазывания на машине 
СМЦ-2 трением скольжения по схеме «вал – частичный вкладыш», имитирующей 
реальные условия трения в подшипниковых узлах, при нагрузке 2 МПа, скорости 
скольжения 1,5 м/с и температуре окружающей среды 295 К. Материалом контртела 
служила сталь 45 твердостью 44 НRС, шероховатостью поверхности 0,32–0,4 мкм. 
Поверхности трения образцов перед испытаниями обезжиривались спиртом гидро-
лизным. Приработка проводилась при нагрузке 100 кПа до образования контакта  
на площади, равной 95 % поверхности трения. Коэффициент трения и интенсивность 
изнашивания определялись для режима установившегося трения.  

Микротвердость материалов устанавливали с помощью нанотестера Fischerscope 
H100С (Fischer Co., Германия). Предел прочности при сжатии определяли по 
ГОСТ 25.503-97 на универсальной испытательной машине Instron 5567 (Instron, 
США). Для каждого состава испытывали по три образца.  

Результаты и их обсуждение 
На рис. 1 представлены зависимости предела прочности при сжатии и микро-

твердости порошкового самосмазывающегося композиционного материала от со-
держания оксида никеля. Показано, что введение дисперсных частиц оксида никеля 
в композиционный самосмазывающийся материал на основе порошковой системы 
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«медь – омедненный ПТФЭ (6 мас. %) – комбинированный углеродный нанострук-
турный наполнитель (0,07 мас. %)» способствует повышению значений предела 
прочности при сжатии и микротвердости данного материала в условиях оптимально-
го содержания оксида никеля и равномерного его распределения в объеме медной 
матрицы. Так, для материала, содержащего 5 мас. % оксида никеля, значение преде-
ла прочности при сжатии составляет 180 МПа, микротвердости – 1100 МПа. Однако 
повышение содержания оксида никеля до 8 мас % резко снижает механические ха-
рактеристики, и тогда значение предела прочности при сжатии с такой концентраци-
ей данного компонента составляет 80 МПа, что можно объяснить существенным ра-
зупрочнением металлической матрицы.  

 

Рис. 1. Зависимость предела прочности при сжатии и микротвердости  
порошкового самосмазывающегося композиционного материала 

от содержания оксида никеля: 
 – предел прочности при сжатии, МПа;   – микротвердость, МПа 

Результаты экспериментальных исследований механических характеристик ком-
позиционного материала показали, что оптимальная концентрация оксида никеля со-
ставляет около 4–6 мас. %. При данном содержании оксида никеля исследуемый мате-
риал обладает следующими механическими характеристиками: микротвердость –  
от 1020 до 1100 МПа; предел прочности при сжатии – от 171 до 180 МПа. 

Однако введение оксида никеля негативно влияет на триботехнические характе-
ристики получаемых материалов. Так, при содержании 6 мас. % оксида никеля в ма-
териале значение коэффициента трения повышается до 0,19 при практически неиз-
менных значениях интенсивности изнашивания – 0,07–0,08 мкм/км (рис. 2). Данное 
поведение материала можно объяснить, используя адгезионно-деформационную 
теорию трения Боудена–Тейбора [22], согласно которой коэффициент трения про-
порционален энергии пластической деформации в зоне контакта. При этом энергия, 
затраченная на необратимую пластическую деформацию микронеровностей поверх-
ности, проявляется как сопротивление движению, увеличивая коэффициент трения. 
К тому же повышение микротвердости композиционного материала увеличивает 
глубину пластических деформаций рабочей поверхности контртела, в результате  
чего возрастают значения коэффициента трения в паре «порошковый самосмазы-
вающийся композит – контртело». Дальнейшее увеличение содержания оксида ни-
келя в композиционном материале повышает значения коэффициента трения до 0,33 
и интенсивности изнашивания – до 0,38 мкм/км.  
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Рис. 2. Зависимость коэффициента трения и интенсивности изнашивания  
порошкового самосмазывающегося композиционного материала  

от содержания оксида никеля: 
 – коэффициент трения;  – интенсивность изнашивания 

Исследовано влияние содержания омедненного олова на триботехнические и ме-
ханические характеристики самосмазывающегося композиционного многокомпо-
нентного материала на основе порошковой системы «медь – омедненный ПТФЭ 
(7 мас. %) – комбинированный углеродный наноструктурный наполнитель 
(0,07 мас. %) – оксид никеля (5 мас. %)» (рис. 3 и 4). Установлено, что введение  
от 0,5 до 4 мас. % омедненного олова позволяет снизить коэффициент трения с 0,16 
до 0,11 при практически неизменных значениях интенсивности изнашивания, кото-
рые составляют 0,07–0,08 мкм/км. Дальнейшее увеличение содержания омедненного 
олова в материале ведет к росту исследуемых характеристик трения и изнашивания. 
Так, при содержании омедненного олова в материале 8 мас. % коэффициент трения 
повышается до 0,26, а интенсивность изнашивания – до 0,25 мкм/км, что объясняет-
ся введением значительного количества мягкой фазы материала. При этом по крите-
риям износостойкости и прочности оптимальное содержание омедненного олова  
в материале составляет 3–5 мас. %. Рассматриваемый материал при данной концен-
трации омедненного олова обладает следующими триботехническими и механиче-
скими характеристиками: коэффициент трения – от 0,11 до 0,13; интенсивность из-
нашивания – от 0,07 до 0,08 мкм/км; микротвердость – от 920 до 1000 МПа; предел 
прочности при сжатии – от 164 до 169 МПа.   

 

Рис. 3. Зависимость коэффициента трения и интенсивности изнашивания  
порошкового самосмазывающегося композиционного материала  

от содержания омедненного олова: 
 – коэффициент трения;  – интенсивность изнашивания 
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Рис. 4. Зависимость предела прочности при сжатии и микротвердости  
порошкового самосмазывающегося композиционного материала  

от содержания омедненного олова:  
 – предел прочности при сжатии, МПа;  – микротвердость. МПа 

На основании результатов экспериментальных исследований можно отметить, что 
введение омедненного олова оказывает комбинированное влияние на прочностные  
и триботехнические характеристики композиционного материала. Во-первых, в про-
цессе электроконтактного спекания олово частично образует жидкую фазу, компенси-
руя тем самым деформации медной матрицы, возникающие под действием эффекта 
теплового удара и пинч-эффекта. В процессе электроконтактного спекания при фор-
мировании жидкой фазы меди в местах контактного взаимодействия частиц медной 
матрицы олово образует ограниченный твердый раствор с медью. Во-вторых, благо-
даря низкой температуре плавления и высокой пластичности, олово в процессе трения 
может локально размягчаться в зонах микроконтактов под действием фрикционного 
нагрева с частичным переходом в полужидкую фазу, что способствует заполнению  
и сглаживанию неровностей микрорельефа на контактирующих поверхностях, сниже-
нию концентрации контактных напряжений и уменьшению вероятности адгезионного 
схватывания. 

Заключение 
Проведены экспериментальные исследования триботехнических и механических 

характеристик порошкового самосмазывающегося композиционного материала с мед-
ной матрицей, содержащего в своем составе плакированный металлом матрицы ПТФЭ, 
наноструктуры углерода, оксид никеля и омедненное олово. На основе анализа полу-
ченных результатов исследований установлены особенности влияния оксида никеля  
и омедненного олова на триботехнические и механические характеристики формируе-
мых композитов.  

Показано, что введение в состав композиционного материала 4–6 мас. % оксида 
никеля и 3–5 мас. % омедненного олова позволяет получить композит, обладающий 
коэффициентом трения 0,11–0,13, интенсивностью изнашивания 0,07–0,08 мкм/км, 
микротвердостью 920–1000 МПа и пределом прочности при сжатии 164–169 МПа. 
Такое сочетание свойств, вероятно, обуславлено совокупным действием твердых 
дисперсных компонентов, стабилизирующих процесс трения и улучшающих экс-
плуатационные характеристики композиционного материала. Наблюдаемый эффект 
позволяет при введении оксида никеля и омедненного олова использовать компози-
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ционные самосмазывающиеся материалы на основе порошковой системы «медь – 
омедненный ПТФЭ (6 мас. %) – комбинированный углеродный наноструктурный 
наполнитель (0,07 мас. %)» при трении с нагрузкой до 2 МПа, что делает данный 
композит перспективным для применения в самосмазывающихся узлах трения.    
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