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Рассмотрена проблема управляемости струйно-абразивной обработки для получения требуемой 
шероховатости после обработки. Представлена методика определения воздействия частиц абрази-
ва, разгоняемых потоком воздуха, на обрабатываемую поверхность. Показаны результаты измене-
ния шероховатости обработанной поверхности от фракционного размера абразива и твердости 
обрабатываемой поверхности. 
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The article examines the problem of controllability of abrasive jet machining to achieve the desired 
roughness after machining. A methodology for determining the impact of abrasive particles accelerated by 
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Введение 
Окончательная или финишная обработка ответственных деталей и деталей для на-

несения покрытий выполняется с помощью абразивных инструментов и сред. Наибо-
лее перспективным методом такой обработки является струйно-абразивная. Сущность 
этого метода заключается в использовании эффекта удара частиц абразива об обраба-
тываемую поверхность. В работах [2, 4, 5] рассматривают обработку, при которой  
абразивно-воздушна смесь под давлением подается на обрабатываемую поверхность. 

При струйно-абразивной обработке используется свободный абразив, что полно-
стью исключает прижеги, температурные и силовые деформации обрабатываемой 
поверхности детали. 
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В качестве абразивных материалов для струйно-абразивной обработки исполь-
зуют чугунную и стальную колотую дробь (для толстостенных деталей), корунд 
(электрокорунд) – плавленый оксид алюминия, карборунд (карбид кремния), чугун-
ный и стальной песок. Материалы должны быть сухими и чистыми, чтобы не загряз-
нять подготовленную поверхность. Сжатый воздух должен быть хорошо очищен  
от влаги и масла (ГОСТ 9010-80). Давление воздуха – 0,4–0,7 МПа; дистанция обра-
ботки – 0,08–0,15 м; угол встречи – 60–90°; расход абразива – 300–500 кг/ч [4]. 

Основными достоинствами струйно-абразивной обработки по сравнению с дру-
гими видами финишных технологических операций обработки поверхностей деталей 
являются высокая производительность, управляемость процессом и простота техно-
логического оборудования [1–5]. Для ее повсеместного внедрения в производство 
необходимо всесторонние исследование физических явлений и закономерностей  
газоабразивной струи как высокоточного технологического инструмента для форми-
рования микрорельефа на обрабатываемой поверхности. 

Рельеф поверхности при струйно-абразивной обработке представлен совокупно-
стью неориентированных в пространстве зубчатых выступов. При струйно-абразивной 
обработке кроме шероховатости на прочность сцепления с наносимым покрытием ока-
зывает влияние повышение общей потенциальной энергии поверхности (наклеп). 

Несмотря на большой опыт практического применения данного метода в области 
поверхностного пластического деформирования, до сих пор не сложилось научно-
обоснованных методик оценки эффективности упрочнения, выбора оптимального 
метода и режима обработки.  

Управляемая концентрация абразивных частиц в несущей и газовой среде позво-
ляет получить в плоскости их контакта с обрабатываемой поверхностью требуемый 
шаг и площадь, занятую элементами частично регулируемого микрорельефа [4, 5]. 
Управление скоростью удара абразивных частиц по обрабатываемой поверхности дает 
возможность получения микрорельефа заданной глубины. 

Целью представленной работы является определение энергии воздействия еди-
ничной частицы на подготовленную поверхность при струйно-абразивной обработке.  

Основная часть 
К преимуществам пневматических дробеметов следует отнести то, что они дают 

концентрированный поток дроби для обрабатывания труднодоступных участков из-
делия. Недостатками их являются пониженная экономичность процесса и неста-
бильность режима наклепа по сравнению с механическими дробеметами. Колебания 
в давлении воздуха и размере дробинок, износ отдельных элементов дробемета, осо-
бенно его сопла, отражаются на скорости дроби и плотности, с которой дробь по-
крывает обрабатываемое изделие. Широкое распространение установки (рис. 1)  
объясняется простотой конструкции, наличием на многих предприятиях централизо-
ванной системы подачи сжатого воздуха, а также накопленным большим опытом 
эксплуатации аналогичных установок для очистки деталей. 

Эжекторная система (рис. 1, а) работает по принципу смешения воздушного по-
тока, находящегося под давлением, и абразивного материала, подхватываемого  
за счет разряжения и уносимого на обрабатываемую поверхность. Напорная система 
(рис. 1, б) работает за счет давления воздуха на материал, находящийся в герметич-
ной емкости. Формирование абразивно-воздушного потока происходит на выходе 
дозатора абразива, после чего выносится через рукав и сопло на обрабатываемую 
поверхность. 

Процесс струйно-абразивной обработки зависит от фракционного состава абра-
зива, его физических свойств и энергетических параметров доставки абразива к об-
рабатываемой поверхности газовым потоком. 
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а) 

 

б) 

Рис. 1. Струйно-абразивная пневматическая установка: 
а – эжекторная система; б – напорная система  

Рассмотрим одномерное неустановившееся течение газа в цилиндрической трубе 
переменного сечения (рис. 2). Выделим объем газа между двумя близкими сечения-
ми, которые находятся на расстоянии dx. Действие на этот объем стенок трубы и газа 
слева и справа заменим поверхностными силами, где Р – давление газа, Па; S – пло-
щадь поперечного сечения трубы, м2. 

 

Рис. 2. Схема неустановившееся течение газа  
в цилиндрической трубе переменного сечения 
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Допустим, что выделенная частица газа объемом Sdx движется вправо под дей-
ствием поверхностных сил. Далее, используя второй закон Ньютона, после неслож-
ных преобразований получим [6]: 
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где   – плотность, кг/м3; v – скорость газа, м/с. 
Отбросив в правой части члены второго порядка малости и сократив площадь S, 

имеем уравнение, в котором давление Р, плотность   и скорость газа v являются 
функциями двух переменных: координаты х и времени t. Заменив в этом уравнении 
полную производную скорости по времени и разделив левую и правую части на ,  
получим уравнение движения, или уравнение Эйлера [6]: 
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Если движение установившееся, то это уравнение значительно упрощается и при-
нимает вид: 
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Сокращая dx, получим: 
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Скорость истечения газа через сопло определяется при адиабатном процессе [6–8]: 
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где v, P и ,1v 1P  – значения скорости и давления, соответствующие двум различным 
сечениям трубы. 

Согласно уравнению неразрывности потока массовый расход газа G [кг/с] в лю-
бом сечении трубы постоянен и равен [8]: 

 const. vSG  

В случае постоянной плотности (несжимаемый поток) объемный расход q [м2/с], 
также постоянен: const. vSq  

Из этого следует, что с увеличением площади поперечного сечения S скорость v 
потока убывает, и наоборот. В сжимаемом потоке газа связь между скоростью пото-
ка и площадью поперечного сечения гораздо сложнее.  

Продифференцировав уравнение неразрывности и разделив каждый член на ,vS  
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Преобразуем уравнение к следующему виду: 
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Скорость газового потока [5]: 
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где k – показатель адиабаты ;)4,1( k 1р  – давление; г  – плотность. 
Исходя из известной величины концентрации воздушной смеси с порошком  

и заданной производительности ,тQ  скорость газового потока определяется: 
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где соплаS  – площадь сопла; d – диаметр частицы порошка; п  – плотность частицы 

порошка; n – концентрация порошка; г  – плотность газового потока. 
Тогда давление газовой струи может быть определено: 
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где 1p  – давление; г  – плотность. 
Надежное транспортирование частиц потоком воздуха возможно при следующей 

его скорости [8–10]: 
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где Re – критерий Рейнольдса; d – эквивалентный диаметр частицы порошка, м;  
  – кинематическая вязкость газа при температуре транспортирования, м2/с; 
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где   – объемная доля порошка; 
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где г  – плотность газа, кг/м3;   – динамическая вязкость газа при температуре 
транспортирования; 
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где Ar – критерий Архимеда; g – ускорение свободного падения, м/с2; п  – плотность 
частицы порошка;   – плотность газа при температуре транспортирования, кг/м3.  

Рассмотрим взаимодействие потока абразива (рис. 3) с обрабатываемой поверх-
ностью и воздействие единичной частицы на нее (рис. 4).  

 

Рис. 3. Схема взаимодействия потока абразива  
с обрабатываемой поверхностью 

 

Рис. 4. Схема воздействия частицы абразива  
на обрабатываемую поверхность 
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Из соотношения между силой, действующей на поверхность, и диаметром полу-
чаемого отпечатка (рис. 4) можно найти величину работы, совершаемой единичной 
частицей при статической деформации [2, 11–13]: 

 .
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Тогда глубина отпечатка приближенно может быть определена: 

 .
4

2

d

D
  

После интегрирования получим уравнение для определения работы, совершае-
мой единичной частицей при деформации поверхности: 
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Исходя из данного уравнения можно найти диаметр отпечатка d и глубину отпе-
чатка :  
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Для отдельной частицы ударная энергия определяется величиной ее кинетиче-
ской энергии: 
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где v – скорость дробинки;   – удельный вес; g  – ускорение силы тяжести. 
Для анализа полученных зависимостей представим процесс дробеструйной обра-

ботки сталей различной твердости: сталь 10(НВ 143); сталь 45 незакаленная (НRC 28); 
сталь 45 закаленная (НRC 46); Р6М5 закаленная (НRC 66). 

Обработка проводилась на струйно-абразивной установке эжекторного типа порош-
ками различного фракционного состава (50–200 мкм) при давлении воздуха 0,4 МПа. 
Результаты измерения шероховатости выполнялись на профилометре (рис. 5). 

Анализ зависимости конечных размеров шероховатости поверхности заготовки 
из сталей различной твердости после струйно-абразивной обработки от размера аб-
разива (рис. 5) показал, что с увеличением размера частиц происходит увеличение 
величины шероховатости по линейной зависимости: ,21 kdkRa   а с увеличением 

твердости поверхности заготовки шероховатость уменьшается (здесь ,1k  2k  – коэф-
фициенты, учитывающие твердость обрабатываемой поверхности; d – приведенный 
диаметр фракционного состава абразива). 
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Рис. 5. Результаты измерения шероховатости 

Заключение 
Установлена взаимосвязь геометрического размера абразива и его физических 

свойств на величину шероховатости обработанной поверхности, получаемой после 
струйно-абразивной обработки. На основании этого можно сделать вывод о том, что 
для формирования необходимой шероховатости нужно обеспечить требуемый раз-
мер частиц абразива с учетом твердости подвергаемой обработке поверхности. Та-
ким образом, при подготовке поверхности основы для газотермического напыления 
с целью создания прочного соединения основы с покрытием следует учитывать пе-
речисленные закономерности. 
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