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Представлен метод силового анализа плоских рычажных механизмов с применением теории 
комплексных чисел. На примере структурной группы Ассура II класса 1-го типа изложены три раз-
личных способа нахождения реакций связей в кинематических парах: методом Крамера, методом 
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Введение 
Силовой анализ плоского рычажного механизма включает определение реакций 

в его кинематических парах, а в некоторых случаях – нахождение уравновешиваю-
щей силы или момента, действующих на начальное звено. Знание этих реакций иг-
рает важную роль в практических расчетах, таких как оценка прочности, жесткости, 
долговечности звеньев и других аналогичных задач. 

Как правило, сущность всех известных аналитических методов силового анализа 
рычажных механизмов состоит в составлении системы уравнений равновесия для 
каждого отдельного звена или структурной группы с дальнейшим решением полу-
ченных уравнений [1–9]. При этом при определении реакций внешних и внутренних 
связей данные реакции раскладываются на составляющие методом проекций на оси 
глобальной системы координат [1–3] или на оси естественного трехгранника [4–6]. 
Для решения полученных систем уравнений могут применяться как простые матема-
тические преобразования [7], так и матричные методы [8, 9], связанные с использо-
ванием различных математических пакетов и языков программирования (например, 
метод Крамера, метод обратной матрицы и др.). 

Известно, что реакция в кинематической паре, как и любая другая сила, определя-
ется тремя параметрами – числовым значением, направлением и точкой приложения, 
что традиционно реализуется с помощью векторных величин. Вместе с тем в силовом 
анализе вместо двухмерных векторов сил представляется возможным применять ком-
плексные числа, которые по существу являются векторными величинами, содержа-
щими всю информацию о длине и направлении вектора. На сегодняшний день исполь-
зование теории комплексных чисел осуществлено в основном при проведении 
кинематического анализа плоских рычажных механизмов [10, 11], так как реализация 
комплексных чисел в силовом анализе только находит свое применение [12, 13]. В по-
следнее время возрождению интереса к возможности использования теории ком-
плексных чисел, как в кинематическом, так и силовом анализе плоских рычажных ме-
ханизмов способствует развитие компьютерной техники и появление мощных 
математических пакетов, способных оперировать с комплексными числами. 

Поэтому реализация теории комплексных чисел в кинематическом и силовом 
анализе плоских рычажных механизмов нуждается в проведении дополнительных 
исследовании в данном направлении и является важной научной и практической за-
дачей. В данной статье будут рассмотрены аналитические способы проведения сило-
вого анализа плоских рычажных механизмов с применением теории комплексных 
чисел, позволяющих в доступном и наглядном виде определять реакции в кинемати-
ческих парах. 

Цель настоящей работы – с помощью теории комплексных чисел на примере 
структурной группы Ассура II класса 1-го типа показать возможность применения 
различных аналитических способов проведения силового анализа плоских рычаж-
ных механизмов. Дать качественную оценку такой возможности использования дан-
ных аналитических способов на практике, а также изучить перспективы их дальней-
шего развития по сравнению с другими методами исследования. 

Постановка задачи 
Примем, что кинематический анализ плоского рычажного механизма выполнен  

с использованием теории комплексных чисел: известны все векторы комплексных 
чисел линейных и угловых ускорений характерных точек и звеньев механизма, сле-
довательно, известны все векторы комплексных чисел сил инерции, а также момен-
ты сил инерции звеньев. Последовательность проведения силового анализа с приме-
нением теории комплексных чисел рассмотрим на примере структурной группы 
Ассура II класса 1-го типа, получившей наибольшее распространение в машино-
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строении, расчетная схема которой приведена на рис. 1. Проанализируем структур-
ную группу в комплексной плоскости, для которой начало координат совпадает  
с кинематической парой А. Найдем реакции связей в кинематических парах А, B и C.  

Выполним силовой анализ рассматриваемой структурной группы с применением 
теории комплексных чисел тремя способами: методом Крамера, методом обратной 
матрицы, а также с помощью тангенциальных и нормальных составляющих. 

 

Рис. 1. Расчетная схема структурной группы Ассура II (3, 4) 

Аналитические зависимости. Представим вектор комплексного числа в сле-
дующей форме записи: 

 ,)sin(cos · j
yx rejrjrrr  (1) 

где r – модуль комплексного числа; xr  и yr  – действительные числа соответственно 

действительной и мнимой части комплексного числа; j – мнимая единица;   – аргу-
мент комплексного числа, представляющий собой угол наклона к действительной 
оси комплексной плоскости, рад. 

В выражении (1) для обозначения вектора комплексного числа здесь и далее бу-
дет использоваться символ нижнего подчеркивания, что в дальнейшем позволит от-
личать вектор комплексного числа от его модуля, а также исключит совпадение  
с принятыми обозначениями обычных векторных величин. 

Для проведения силового анализа с применением теории комплексных чисел все 
внешние нагрузки на комплексной плоскости должны быть в общем виде представ-
лены в следующей алгебраической форме записи комплексного числа (рис. 1): 

 ;y
ii jGG   ;y

i
x
ii jФФФ   ,z

ii MM   (2) 

где iG  и iФ  – векторы комплексных чисел соответственно силы тяжести и силы 

инерции, приложенные в соответствующей i-й точке; iM  – момент силы, приложен-

ный к соответствующему i-му звену, направление действия которого будет опреде-
ляться алгебраическим знаком действительного числа (положительное значение со-
ответствует вращению против хода часовой стрелки, а отрицательное – по ходу 
часовой стрелки). 

Единичный вектор (орт) любого произвольного вектора комплексного числа бу-
дет находиться путем деления данного вектора на его длину: 

 ,||/)( rrrOrt   (3) 

где r  – исходный произвольный вектор комплексного числа. 



ВЕСТНИК ГГТУ ИМ. П. О. СУХОГО № 4  2025 8 

Рассмотрим операцию умножение комплексных чисел с использованием ком-
плексного сопряжения. Данная операция служит аналогом для скалярного и вектор-
ного произведений векторов, применяемых в векторной алгебре, и позволяет заме-
нить их единым алгебраическим действием [12, 13]. Так, если при перемножении 
двух векторов комплексных чисел первый вектор представить в виде комплексно-
сопряженного числа, то действительная часть полученного таким образом произве-
дения (с учетом величины алгебраического знака) будет представлять значение ска-
лярного произведения двух векторов, заданных этими числами. Мнимая же часть та-
кого произведения также с учетом величины алгебраического знака будет 
представлять собой значение векторного произведения этих же двух векторов. Дан-
ное свойство векторов комплексных чисел можно представить в следующем виде: 

 ),()()(

иепроизведен векторное

2121

иепроизведен скалярное

2121221121  xyyxyyxxyxyx rrrrjrrrrjrrjrrrr   

где 
1r  – первый перемножаемый вектор комплексно-сопряженного числа к вектору ,1r  

которые образуют пару комплексных чисел с одинаковыми действительными частями 
и равными по абсолютной величине, но противоположными по знаку, мнимыми час-
тями; 2r  – второй перемножаемый вектор комплексно числа. 

Таким образом, связь скалярного и векторного произведения между векторными 
и комплексными величинами можно представить в виде следующего тождества: 

  2121 Re rrrr   и    ,Im 2121 rrrreZ
  (4) 

где 1r  и 2r  – два перемножаемых вектора; Ze  – единичный вектор оси Z. 
Примем, что при работе с комплексными числами в выражениях (4) по аналогии 

с механикой первый умножаемый вектор комплексно-сопряженного числа всегда 
будет представлять собой радиус-вектор точки приложения вектора силы, а второй – 
вектор комплексного числа самой этой силы. Это позволит в дальнейшем использо-
вать выражение (4) в силовом анализе при составлении уравнений равновесия мо-
ментов векторов комплексных чисел сил относительно заданной точки. 

Силовой анализ. Порядок силового расчета плоского рычажного механизма  
с помощью теории комплексных чисел имеет классический вид, т. е. обратный поря-
док по сравнению с кинематическим [14]. 

Способ 1. Рассмотрим структурную группу (рис. 2). Реакции связей в кинемати-
ческих парах представим в виде компонент в проекции на оси декартовой системы 
координат (рис. 2). 

Для определения неизвестных четырех проекций реакций связей составим вектор-
ное уравнение равновесия сил, действующих на всю рассматриваемую структурную 
группу, и два уравнения моментов сил, действующих на каждое звено относительно 
точки, которые характеризуют внутреннюю кинематическую пару группы Ассура: 

     
    














.0ImIm

;0ImIm

;0

444
*

54
*

333
*

23
*

54234343

MФGAERAC

MФGADRAB

RRФФGG

 (5) 

Несмотря на то, что система уравнений (5) содержит три уравнения, данная сис-
тема является разрешимой, так как первое уравнение системы (5) имеет две части – 
мнимую и действительную.  
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Рис. 2. Расчетная схема структурной группы Ассура II (3, 4)  
к способам 1 и 2 

Для решения системы уравнений (5) воспользуемся методом Крамера. Составим 
основную матрицу из коэффициентов системы уравнений равновесия (5), в которой 
ее элементы – это коэффициенты при неизвестных переменных: 

    
   





















jACAC

jABAB
K

**

**

Im1·Im00

00Im1Im

1010

0101

. (6) 

В выражении (6) для нахождения плеча к неизвестным проекциям реакций свя-
зей в кинематических парах B и C применим операцию умножения вектора ком-
плексно-сопряженного числа с соответствующим единичным вектором оси ком-
плексной плоскости. Такая операция является аналогом векторного способа 
нахождения плеч для осей X и Y [15], которая связана с векторами комплексных чи-
сел в виде следующего тождества: 

    1Im 11  rere XZ  и    ,Im 11 jrere YZ
  

где Xe  и Ye  – соответственно единичные векторы осей X и Y. 
Составим матрицу-столбец свободных членов для системы уравнений (5): 

 

 
 

   
   

.

Im

Im

Im

Re

444
*

333
*

4343

4343


























MФGAE

MФGAD

ФФGG

ФФGG

H  (7) 

Составим четыре вспомогательные матрицы, получаемые из основной матрицы 
системы (6) путем замены i-го столбца столбцом матрицы свободных членов (7): 

 ;

3,32,31,33

3,22,21,22

3,12,11,11

3,02,01,00

1


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

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
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2




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














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 (8) 
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 ;
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

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






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




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 .

32,31,30,3
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12,11,10,1

02,01,00,0

4























HKKK

HKKK

HKKK
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 (9)  

Неизвестные проекции реакций связей (5) находим по следующим формулам 
Крамера: 

 ;
||

|| 1
23 


xR  ;

||

|| 2
23 


yR  ;

||

|| 3
54 


xR  .

||

|| 4
54 


yR  (10) 

Вектор реакции связей в кинематических парах B и С в комплексном виде опре-
делим по формулам: 

 ;232323
yx jRRR   .545454

yx jRRR   (11) 

Вектор реакции связей во внутренней кинематической паре A найдем из уравне-
ния равновесия сил, действующих на одно из звеньев: 

  ,332334 ФGRR   или  .445443 ФGRR   (12) 

Способ 2. Решение системы уравнений (5) методом обратной матрицы является 
более быстрым и компактным по сравнению с предыдущим рассмотренным методом 
и предполагает использование для поиска решения все той же основной матрицы (6) 
и матрицы-столбца свободных членов (7): 

   .1
54542323 HKRRRR

Tyxyx   (13) 

В выражении (13) используется обратная основная матрица (6), а результатом 
решения является вектор искомых параметров, состоящий из проекций реакций  
на действительную и мнимую ось комплексной плоскости, представленный в транс-
понированном виде. 

Нахождение векторов реакций связей в кинематических парах B и С, а также  
во внутренней кинематической паре A производится по формулам (11) и (12). 

Способ 3. Реакции связей в рассматриваемой группе Ассура представим в проек-
ции на оси естественного трехгранника (рис. 3).  

 

Рис. 3. Расчетная схема структурной группы Ассура II (3, 4) к способу 3 
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Тангенциальную составляющую реакции связей находим для каждого отдельно-
го звена рассматриваемой структурной группы путем составления уравнения равно-
весия моментов сил, действующих на звено, относительно точки, характеризующего 
внутреннюю кинематическую пару. При составлении этих уравнений воспользуемся 
описанным свойством умножения двух комплексных чисел (4). Эти уравнения рав-
новесия имеют вид: 

    ;Im 333
* MФGADM AB      .Im 444

* MФGAEM AC   (14) 

Векторы комплексных чисел неизвестных тангенциальных составляющих реак-
ций в кинематических парах B и C представим в виде произведения их длин (моду-
лей) на единичные векторы (орты) их направления, которые заранее известны (пер-
пендикулярны звеньям AB и AC): 

 ;232323
  eRR  .545454

  eRR  (15) 

Единичные векторы (орты) тангенциальных составляющих реакций в кинемати-
ческих парах B и С найдем, используя выражение (3): 

   ;23 jABOrte     .54 jACOrte   (16) 

В правой части выражений (16) оба вектора комплексных чисел умножены на мни-
мую единицу, что соответствует повороту вектора комплексного числа на угол 90°  
в комплексной плоскости против хода часовой стрелки. 

Используя выражения (14)–(16), модуль тангенциальных составляющих реакций 
в кинематических парах B и C рассматриваемой структурной группы представим  
в следующем виде: 

  ;Im 23
*23 






eAB

M
R AB   .Im 54

*54 

 
eAC

M
R AC  (17) 

В результате с помощью выражений (17) для звеньев AB и AC рассматриваемой 
структурной группы (рис. 3) находятся значения тангенциальных составляющих ре-
акций в кинематических парах B и C, а с помощью выражений (15) – соответствую-
щие им векторы. 

Далее найдем вспомогательный вектор комплексного числа силы, равный сумме 
всех известных векторов сил, действующих на рассматриваемую структурную груп-
пу (включая векторы комплексных чисел найденных тангенциальных составляющих 
реакций в кинематических парах B и C), но взятый с противоположным знаком: 

  .54234343
  RRФФGGRABC  (18) 

Данный вектор является суммой nR23  и .54
nR  

Для определения нормальных составляющих реакций связей в кинематических 
парах B и С запишем по аналогии следующие выражения: 

 ;232323
nnn eRR   ;545454

nnn eRR   (19) 

  ;23 ABOrten    .54 ACOrten   (20) 
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Воспользуемся свойством векторного произведения [5] и получим итоговые 
уравнения для определения нормальных составляющих реакций связей:  

 
 
  ;

Im

Im

5423

54
*

23 nn

n
ABCn

ee

eR
R   

 
  .

Im

Im

2354

23
*

54 nn

n
ABCn

ee

eR
R   (21) 

Определив с помощью выражений (21) значения нормальных составляющих ре-
акций связей в кинематических парах B и C, а с помощью уравнений (19) – соответ-
ствующие им векторы, найдем вектор комплексных чисел их полных реакций: 

 ;232323
nRRR    .545454

nRRR    (22) 

Вектор комплексного числа полной реакции во внутренней кинематической  
паре A определяем по формулам (12). Таким образом, с помощью выражений (14)–(22) 
проведен силовой анализ рассматриваемой структурной группы с помощью теории 
комплексных чисел. 

Представленный алгоритм определения векторов комплексных чисел тангенци-
альных (выражения (14)–(19)) и нормальных (выражения (19)–(22)) составляющих 
реакций легко может быть алгоритмизирован в любом математическом пакете или 
языке программирования (с помощью так называемых функций пользователя [5]). 

Результаты и их обсуждение. Используя в качестве примера исходные данные, 
приведенные в таблице, проведем силовой анализ тремя способами с применением 
теории комплексных чисел рассматриваемой структурной группы Ассура II класса  
1-го типа (рис. 1). 

 
Исходные данные для расчета рассматриваемой структурной группы 

Координаты точек, мм Проекции силовых факторов, Н (Н · мм) 
Ось 

A B C D E G3 G4 Ф3 Ф4 M3 M4 

X 0 –155 80 –80 65 0 0 –60 40 0 0 
Y 0 –35 –80 40 –20 –40 –70 10 –5 0 0 

Z 0 0 0 0 0 0 0 0 0 –100 200 
 
Приведем числовые значения результатов аналитического расчета векторов ком-

плексных чисел реакций в кинематических парах A, B и С, а также их модулей  
для силового анализа способами 1 и 2: 

jR  840,38722,3723  Н; jR  160,66722,1754  Н; jR  840,8278,2243  Н; 

144,54|| 23 R  Н; 492,68|| 54 R  Н; 968,23|| 43 R  Н. 

Представим числовые значения результатов расчета векторов комплексных чи-
сел тангенциальных и нормальных составляющих реакций в шарнирах B и С, а так-
же их модулей для силового анализа способом 3: 

 jR  851,28,515623  Н; 578,29|| 23 R  Н;  

 jR  219,24219,2454  Н; 250,34|| 54 R  Н; 

 jRn  989,90237,4423  Н; 351,45|| 23 nR  Н;   

 jRn  941,41941,4154  Н; 313,59|| 54 nR  Н. 
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Проверка адекватности. Полученные результаты аналитического расчета сило-
вого анализа с применением теории комплексных чисел полностью совпадают для 
всех трех предложенных способов, а также с результатами расчета, проведенного  
с помощью программного комплекса динамического анализа систем твердых тел. 

 

Рис. 4. Проверка реакций в шарнирах с помощью программного  
комплекса динамического анализа систем твердых тел 

На рис. 4 приведена рассматриваемая структурная группа с учетом всех прило-
женных нагрузок, а также с выведенными векторами результирующих реакций в ки-
нематических парах A, B и C, модули которых полностью совпадают с аналитиче-
скими результатами расчета. 

Заключение 
В данной работе на примере структурной группы Ассура II класса 1-го типа 

представлены аналитические способы проведения силового анализа плоских рычаж-
ных механизмов с испоьзованием теории комплексных чисел. Рассмотрен частный 
случай силового анализа, при котором данная группа является последней присоеди-
нительной структурной группой плоского рычажного механизма. 

Предложенные способы силового анализа легко поддаются формализации и ал-
горитмизации в современных математических пакетах и языках программирования. 
Применение теории комплексных чисел в силовом анализе плоских рычажных меха-
низмов показало свою высокую эффективность, наглядность, доступность и может 
быть внедрено как в учебной, так и в инженерной практике. 
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