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Введение. Волновые уравнения, содержащие гиперболические, экспо-

ненциальные и тригонометрические нелинейности (нелинейные уравнения 

вида Клейна-Гордона) позволяют моделировать разнообразные физические 

процессы: волны в ферромагнетиках, дислокации в кристаллах и др. В 

докладе представлены новые результаты исследования уравнений волно-

вого теплопереноса в однокомпонентных и двухкомпонентных системах с 

нелинейными источниками энергии. Прикладные аспекты данной работы 

связаны с проблемой взрывной кристаллизации аморфных пленок, напы-

ленных на подложку [1, 2].  

Однокомпонентные системы. Волновое уравнение теплопереноса с 

источником энергии имеет вид: 

    )(
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xxtt 
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где х  декартова координата; t  время; 1T   температура; 2

1
w  = )/(
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 c  

квадрат скорости распространения тепловых возмущений; 
1

  коэффици-

ент теплопроводности; 
1

c   объемная теплоемкость; 
1
   время релаксации 

теплового потока; )/(
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cqk ; )1(


q  мощность внутренних источников 

тепла; независимая переменная в роли нижнего индекса означает диффе-

ренцирование. Современное состояние теории локально-неравновесного 

теплопереноса дано в [3]. Укажем здесь пять новых точных решений урав-

нения (1). Уравнению (1) соответствует динамическая система 
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Здесь 
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A , 
*

B   const; 
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/ ABN 


 скорость перемещения линии; 
2

1

22 /M wN


   квадрат числа Маха; в дозвуковом процессе 2M

 1, в сверх-

звуковом процессе 2M

  1. Вырожденный «звуковой» вариант 2M


 = 1 при-

водит к классическому решению Даламбера волнового уравнения без ис-

точников. Периодические решения IIV представим в следующей форме. 

I.      2)]1/()1ln[()ξθ uu(  , )sin()])/(  [(1 1/22

*
mmgmu  ,  

    )2/(sh)4/th(2)2/sh()1(2sh)( 22

*
 gmQ , 

m  0, 1 2

*
g  1 – m. 

II.                  uarctg4 , 
12/1 )]1[cos(])/[(1  mmmu . 
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,sin)2/sin(2)(  mQ  0  m  1. 

III.             uarctg4)(  , )cos(]/)1[( 2/1 mmmu  , 

 sin)2/sin()1(2)( mQ , 0  m  1. 

IV.         2

1
)]cos(2ln[)(  mA , 2

1
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где m,   произвольные постоянные. Отметим, что для случаев IIII  тем-

пература 0

11
TT   является нейтральной, потому что 0)0( Q . Вариант 

IV отличается тем, что AQ  )0(  0. Во всех четырех случаях знак ис-

точника 1


k  зависит, согласно (2), от числа Маха. Для одной и той же 

функции )(Q переход от одного режима к другому («дозвук»  «сверх-

звук») означает инверсию знака источника энергии. Варианты II и III отно-

сятся к двойному уравнению синус-Гордона. 

В дополнение к варианту I, для которого источник )(Q  содержит ги-

перболические нелинейности, укажем еще одно новое точное решение: 

V.                                        )(sh 0

11

)1( TTk 


, 
2

1

10

11
)/(/sin

)/(/sin
exp 














kwxk)(t

kwxk)(t
)T(T , 22 )/(kwx  1, constk . 

 В данном случае в указанной области определения решения при каж-

дом фиксированном х знакопеременный источник энергии генерирует ко-

лебания температуры около изотермы 0

11
TT  . 

 Двухкомпонентные системы. Поведение 1-й компоненты определя-

ется уравнением (1) с источником вида (2), который зависит только от 

температуры «своей» компоненты. В этом смысле он является «ведущим» 

для второго источника  
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который линейно зависит от температуры 0

22
TT  . Наклон этой пря-

мой линии, т.е. производная 
2

)2( / Tk 


, есть нелинейная функция темпера-

туры 1-й компоненты. Источник энергии вида (3) является «ведомым», он 

определяет поведение 2-й компоненты: 
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причем 22

2

2

1
www  . На основе I – IV удается построить новые точные 

решения системы уравнений (1) – (4), применяя два зависимых друг от 

друга аргумента типа бегущей волны: 
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где 


N  скорость перемещения  -линии. Двухскоростные решения пред-

ставим в следующей форме. 

I1.      cos)( , )()()()( 2

*

22
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222  QAwBghwK ,             (5) 

где функции   , )(Q  определены решением I. 

 II1, III1, IV1.    sin ; функция )(K совпадает по форме запи-

си с (5). Основой этих решений являются, соответственно, зависимости II, 

III, IV. Таким образом, получаем: вдоль  - линии const)1( 


k , 
)2(


k  )( 0

22
TT  ; вдоль линии const  источник )2(


k  есть нелинейная функ-

ция температуры  -линии. Числа Маха подчинены связи: 1MM 22 


, где 
2

2

22 /M wN


 . Значит, в данном классе решений двухскоростной процесс 

является контрастным: если одна из скоростей дозвуковая, то другая – 

сверхзвуковая, т.е. 2M

  1, 2M


  1  либо 2M


  1, 2M


  1. 

 Из решений I1, II1, III1, IV1 следуют примеры точных односкоро-

стных решений, относящиеся к двухкомпонентным системам с источника-

ми )()1( 


k , 


/),(),()2( Kk  типа «ведущий-ведомый», где  

),()(),(
1
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22

*
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I11. Взяв в решении I1 m , получаем   )cos( m ,  

]/2)sh(4[)()(
1

 mQK . 

I12. Если m 2 , то решение имеет вид:   cos  m2 ,  

   /2/2)sh(8)(4),(
1

mQmK . 

II11. Взяв в решении II1 m 1 , получаем  

   m 1sin ,   /2)(sin4)1()()(
1

mQK . 

II12. Если m 12 , то решение имеет вид:  

  )2/1sin( m ,  )4/(/4)(sin4)1()()(
111

 AmQK , 

)4/sin()]1/([)4/cos( 2/1

11
 mmA .                         (6) 

III11. Взяв в решении III-1 m , получаем   )sin( m , 

 /2)(sin4)()(
1

 mQK . 

III12. Если m2 , то решение имеет вид: )2/sin()( m , 

11

2/1

1
)4/cos()]1([4)4/()()( AmmmQK  , 

где 
11

A  подсчитывается по формуле (6). 

IV11. Взяв в решении IV1  m , получаем )sin()(  m , 

)4()()(
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IV12. Если  m2 , то решение имеет вид: )2/sin()(  m , 

13

22

1
4)4/()()( AmmQK   , 

1

113
)2)](2/exp(1[)2/exp(  AA , 



593 

 

где постоянную 
1

A  следует задавать так, чтобы иметь 0)(   в области 

решения, см. IV.  

Возбуждение колебаний и дисперсия волн. Дадим пример физической 

интерпретации решения I. Нижний индекс 1 (номер компоненты) здесь для 

краткости  не пишем.   Рассмотрим  волновой   процесс  при   
j

xx ,0 ,   

где  х = 0 – неподвижная стенка, а правая граница )2/( m
j

 , 

)/()/(
***

AtABx
jj

 подвижна, ее скорость перемещения определяется 

нелинейным кинетическим соотношением )(
jj

TNN  . Нижним индексом j 

отмечаем значения функций на правой границе. Согласно I, имеем: 

),sin( kxtau   mB 
*

, mAk 
*

,  

)/()1( 2

*

2 mgma   0, 
*

A  0, 
*

B  0, 
**

/ ABN    0, 

где  а – амплитуда колебаний; k – волновое число; – круговая частота. 

Возбуждение колебаний на левой границе происходит по гармоническому 

закону )sin(),0( tatxu  , )( aa . Кинетические свойства правой гра-

ницы определяются экспоненциальной зависимостью ее скорости от тем-

пературы: )](exp[ 0TTrNN
jj
 ; const,  r . Отсюда получаем 

r

jj
uukN 2)]1/()1[(/  , )( au

j
. 

Значит, дисперсионное соотношение между   и k имеет вид: 
raak 2)]1/()1[(  , где 0  )(a  1 либо )(a  1. Дисперсионные 

свойства данной системы изучены при следующей корреляции между ам-

плитудой и круговой  частотой: ])(exp[)( 2

11
 paa , где 

11
,, pa – 

положительные и постоянные величины; 
1

 – резонансная частота возбуж-

дающих колебаний. Если 0  
2a  1, то функция )( kk имеет два экстре-

мума при  ,  , и обе эти частоты расположены в субрезонанс-

ной области: 0  
11

2/  , (
1

 /2) –   – ( 2/
1

 ). Если 
2a  1, 

то функция )(k имеет один экстремум, который расположен в сверхрезо-

нансной области:    
1

 . Детально изучены условия существования нор-

мальной и аномальной дисперсий, а также другие важные закономерности. 
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