ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ КПД ТРАНСФОРМАТОРОВ ОТ НАГРУЗКИ

Г.Ф. Куценко, О.С. Шведова

Гомельский государственный технический университет им. П.О. Сухого

Как известно, коэффициент полезного действия (КПД) двухобмоточных трансформаторов определяется по формуле

$$\eta = \left(1 - \frac{P_x + K_n^2 \cdot P_\kappa}{K_n \cdot S_n \cdot \cos \varphi + P_x + K_n^2 \cdot P_\kappa}\right) \cdot 100\%, \qquad (1)$$

где P_x — потери холостого хода, кВт; P_k — потери короткого замыкания, кВт; K_B — коэффициент нагрузки трансформатора, равный

$$K_{\mu} = \frac{S_m}{S_{\mu}},\tag{2}$$

где S_m — максимальная нагрузка, кВ·А; S_H — номинальная нагрузка, кВ·А. По формуле (1) нами рассчитаны КПД двухобмоточных трансформаторов класса напряжения 10кВ в зависимости от нагрузки, которые представлены на рис. 1.

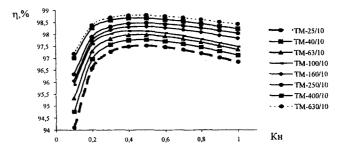


Рис. Кривые зависимости КПД трансформаторов от их загрузки

Как видно из рисунка, КПД трансформаторов 10/0,4 кВ с повышением их мощности повышаются. При нагрузке 0,4–0,6 КПД трансформаторов достигают максимальной величины. А при нагрузке выше 0,6 — КПД трансформаторов уменьшаются.

Исследования показали, что аналогичные зависимости имеют и трансформаторы других классов напряжения – 35, 110 кВ и т.д.

Анализ формулы (1) показал, что КПД трансформаторов зависит от нагрузки и мощности.