причем толщина его должна быть 0,3 мкм. Смещение в отрицательную область электродного потенциала композиционного покрытия с увеличением толщины «твердого» слоя свидетельствует о нарастании уровня внутренних напряжений в покрытии.

Таким образом, как показали проведенные исследования, для снижения уровня внутренних напряжений в многослойных покрытиях необходимо формирование слоя (Ti, Cr)N с градиентом концентрации хрома.

Работа выполнена при поддержке гранта БРФФИ № Т23РНФМ-012.

Литература

- 1. Multilayer Coatingsfor Tribology: A Mini Review / Liu Yanfei, Yu Shengtao, Shi [et al.] // Nanomaterials. 2022. N 12. P. 1388.
- 2. Mechanical properties and the level of internal stresses of multilayer ion-plasma coatings Ti-TiN and Ti-TiVN for parts made of titanium alloys / A. M. Smyslov, Yu. M. Dyblenko, K. S. Selivanov [et al.] // Vestnik UGATU. − 2019. − Vol. 23. − № 4 (86). − P. 42–498.
- 3. Парфенов, В. Д. Износоразрушение покрытия инструмента в процессе резания / В. Д. Парфенов, Е. К. Толмачева // Нефть и газ. 2015. С. 121–123.

УДК 678.5.046:546.26

ФОРМИРОВАНИЕ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ НА ОСНОВЕ ДИСПЕРСНЫХ ТЕРМОПЛАСТОВ ДЛЯ ПОЛУЧЕНИЯ ИННОВАЦИОННЫХ МЕТАЛЛОПОЛИМЕРНЫХ ИЗДЕЛИЙ

В. М. Шаповалов¹, К. В. Овчинников¹, М. А. Коваленко¹, А. М. Валенков²

¹ГНУ «Институт механики металлополимерных систем имени В. А. Белого НАН Беларуси», г. Гомель

²БелНИПИнефть РУП «Производственное объединение «Белоруснефть», г. Гомель

Широкое применение при создании приборов, оборудования, конструкционных изделий, металлических сооружений находят защитные полимерные покрытия, отличающиеся разнообразием свойств в зависимости от назначения и условий их эксплуатации [1]. Окраска изделий порошковыми красками – современная технология получения качественных защитно-декоративных покрытий, обеспечивающая экономические и экологические преимущества по сравнению с жидкими лакокрасочными материалами. Нанесение покрытий осуществляется с помощью распыления порошка в электростатическом поле с последующим спеканием по технологическим режимам, специально подобранным для данного типа краски и обрабатываемого металлоизделия. В современном полимерном материаловедении ведутся работы по созданию новых композиционных составов для получения покрытий триботехнического назначения. В то же время формирование такого рода покрытий и их эксплуатация в условиях высоких нагрузок и знакопеременных температур требуют проведение работ по улучшению их деформационно-прочностных свойств. Одним из способов, обеспечивающих повышение данных свойств материала, является использование порошкообразных термопластов, в частности, полиамидов с введением в полимерную матрицу ультрадисперсных наполнителей [2].

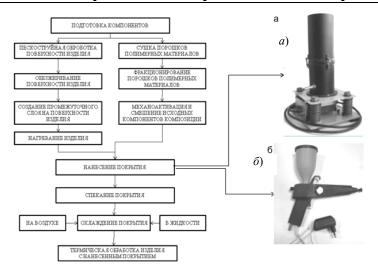
Цель работы — исследование влияния ультрадисперсных частиц структурированного углерода на деформационно-прочностные и триботехнические свойства покрытий на основе полиамида-6.

В качестве полимерного связующего применяли порошкообразный полиамид-6 с размером частиц не более 200 мкм, полученный криогенным измельчением гранулированного продукта производства ОАО «ГродноХимволокно». В качестве напол-

нителя использовали ультрадисперсные частицы структурированного углерода (ЧСУ), полученные в плазме высоковольтного разряда атмосферного давления [3].

Композиции готовили путем смешения навесок исходных компонентов в шаровой мельнице BLM-2 с применением керамических и стальных шаров диаметром 20–50 мм. Содержание наполнителя в композиции варьировали в пределах 0,1–1,2 мас. %.

Покрытия получали путем погружения в псевдоожиженный слой порошковой смесевой композиции металлических подложек, изготовленных из стали марки 45, предварительно нагретых до температуры 270 °C. Спекание композиции до получения сплошного покрытия на металлической поверхности осуществляли в электропечи СНОЛ при температуре 240 °C в течение пяти минут.


Механические свойства композитов исследовали на автоматизированном стенде INSTRON 5567 (Великобритания) по стандартной методике (ГОСТ 11262-80) при скорости перемещения подвижных захватов 50 мм/мин.

Определены концентрационные зависимости наполнения полиамидной матрицы ЧСУ с немодифицированной поверхностью, где при содержании наполнителя в полимере в количестве 0,2 мас. % наблюдается возрастание модуля упругости при растяжении на 30 %, разрушающего напряжения — на 14 %. Дальнейшее повышение концентрации ЧСУ в композите до 0,4 мас. % обеспечивает возрастание только показателя модуля упругости (еще на 27 %) без значительного повышения (на 2%) разрушающего напряжения при растяжении. В интервале концентраций ЧСУ в композите 0,6—1 мас. % практически отсутствует рост показателей E_P и σ_p . Таким образом, максимальными значениями E_P (2800 МПа) и σ_p (75 МПа) обладают образцы ПА 6 наполненного частицами ЧСУ в количестве 0,4 %.

Установлено, что плазмохимическое модифицирование поверхности частиц структурированного углерода позволяет повысить механические характеристики композитов, прежде всего за счет улучшения адсорбционного взаимодействия модифицированной поверхности частиц наполнителя и макромолекул полиамида. При этом происходит образование областей молекулярного упорядочения в аморфной фазе полимерной матрицы, играющих роль физических узлов сшивки макромолекул полимера. Протекание вышеперечисленных процессов подтверждается повышением степени кристалличности полимерной матрицы. Так, исходный ПА 6 имеет степень кристалличности 30 %, при введении ЧСУ в количестве 0,2–0,6 мас. % степень кристалличности полимера возрастает до 37–45 % соответственно. Дальнейшее повышение концентрации наполнителя до 0,8–1 мас. % не приводит к последующему росту кристалличности ПА 6.

Таким образом, при введении плазмохимически модифицированных ЧСУ в интервале концентрации 0,4—0,6 мас. % они наиболее выражено проявляют нуклеирующую способность, в результате чего отмечается рост степени кристалличности ПА 6 и, как следствие, значительное повышение показателей механических характеристик композиционных покрытий в этом интервале концентрации частиц наполнителя.

Опытно-промышленную апробацию результатов исследований проводили на экспериментальном и промышленном оборудовании в ЛТО ИММС НАН Беларуси. На рис. 1 представлена технологическая схема формирования защитного износо-устойчивого композиционного покрытия, используемого при проведении ремонтновосстановительных работ поверхности деталей авиационной техники.

 $Puc.\ 1.$ Технологическая схема получения защитных покрытий на основе алифатических полиамидов, наполненных частицами структурированного углерода с модифицированной поверхностью: a — установка для нанесения покрытий вибровихревым способом (ИММС НАН Беларуси); δ — установка для нанесения покрытий электростатическим способом («Старт-50»)

В ИММС НАН Беларуси имеется также большой опыт работы в области технологии нанесения полимерных порошковых покрытий на крупногабаритные металлические изделия (рис. 2).

Puc. 2. Технологическое оборудование для нанесения порошковых красок на металлоизделия

Технологический процесс окраски изделия порошковыми красками состоит из следующих стадий:

- подготовка поверхности: обезжиривание с одновременным фосфатированием изделий для удаления загрязнений и окислов и повышения адгезии и защиты от коррозии с последующей промывкой и сушкой поверхности;
 - нанесение слоя порошковой краски на окрашиваемую поверхность;
 - формирование полимерных покрытий.

Литература

- 1. Белый, В. А. Полимерные покрытия / В. А. Белый, В. А. Довгяло, О. Р. Юркевич. Минск : Наука и техника, 1976.-416 с.
- 2. Валенков, А. М. Полимерные композиционные системы с добавками наноструктурных соединений (обзор) / А. М. Валенков, В. М. Шаповалов, К. С. Носов // Материалы. Технологии. Инструменты. 2009. Т. 14, № 4. С. 30–38.

УДК 621.793

ФОРМИРОВАНИЕ ОКСИКАРБИДНЫХ ПОКРЫТИЙ НА ОСНОВЕ СИСТЕМЫ Ti-Al-Cr-Ni

С. Д. Латушкина, О. И. Посылкина, И. А. Сечко

Физико-технический институт НАН Беларуси, г. Минск

В настоящее время одним из перспективных направлений в науке о материалах считается направление, связанное с созданием и применением высокоэнтропийных систем (прежде всего – сплавов) [1]. Выделение таких систем в особую группу связано с тем, что процессы структуро- и фазообразования в них, а также диффузионная подвижность атомов, механизм формирования механических свойств и термическая стабильность существенно отличаются от аналогичных процессов в традиционных сплавах, в которых основу составляют один или два элемента. Высокая энтропия смешения компонентов в этих сплавах обеспечивает повышенную термическую стабильность фазового состава и структуры сплава, следовательно, его свойств, что является несомненным достоинством не только при эксплуатации, но и в процессе изготовления изделий. В последние годы быстро растёт количество работ, направленных на получение и исследование свойств нитридных, боридных и оксидных высокоэнтропийных систем [2]. В настоящее время представляет интерес получение покрытий из ВЭС методом вакуумно-дугового осаждения [3, 4]. Высокая степень ионизации плазмообразующих металлов, реализуемая данным методом, позволяющая обеспечить высокую адгезионную прочность, высокую вероятность плазмохимических реакций образования соединений, прохождение диффузионных процессов в покрытии, расширяет технологические возможности осаждения покрытий из высокоэнтропийных сплавов.

Цель работы заключалась в исследовании особенностей процесса фазо- и структурообразования покрытий (Ti–Al–Cr–Ni) + CO₂, формируемых методом двух-катодного вакуумно-дугового осаждения из сепарированных плазменных потоков.

Формирование покрытий методом вакуумно-дугового осаждения представляет собой многостадийный и сложный процесс. При осаждении формируемый слой полностью повторяет исходный микрорельеф поверхности, дополняя его рельефом структурных дефектов покрытия либо нано- и макросоставляющими плазменного потока. Обеспечение однородной структуры и равномерности распределения элементов по объему покрытия является необходимым условием обеспечения стабильности его физико-механических свойств. Установлено, что в структуре тонких покрытий (толщина 800 нм) вне зависимости от технологических режимов осаждения наблюдается четкая граница между переходным слоем титана (толщина 251 нм) и слоем многокомпонентного покрытия (рис. 1, а).