ПЛЕНАРНЫЕ ДОКЛАДЫ

УДК 341.018

САНКЦИИ: ПРОБЛЕМЫ ИЛИ НОВЫЕ ВОЗМОЖНОСТИ

А. Н. Савенок

OAO «СтанкоГомель», Республика Беларусь

Уважаемые друзья!

Рад приветствовать Вас на II Международной научно-практической конференции «Инновационное станкостроение, технологии и инструмент».

Отрадно отметить, что география участников конференции расширяется, в этот раз представлены научные организации, промышленные предприятия и компании из Беларуси, России и Китая.

Всего в конференции участвуют более 50 различных организаций.

В настоящее время в тесном содружестве с университетами и академическими научными институтами расширяется продукция нашего предприятия.

Следует отметить, что закупки обрабатывающих центров и станков по импорту расширяются (если в 2023 г. они составили 4532,0 тыс. долл., то в 2024 г. – 7373, 0 тыс. долл.). Одному из предприятий министерства промышленности было выделено государственное финансирование на закупку оборудования. Однако вместо того, чтобы выделенное финансирование потратить на закупку отечественного оборудования, разработанного по программе импортозамещения, – станки производства ОАО «СтанкоГомель», закупают оборудование с худшими характеристиками иностранного производства (см. таблицу).

Сравнительный анализ технических характеристик оборудования ОАО «СтанкоГомель»

Некоторые технические характеристики	Продукция «СтанкоГомель»	Продукция юго-восточной Азии, поступившая в Беларусь
1. Скорости быстрых перемещений	30 м/мин	20 м/мин
2. Емкость инструментального магазина: — горизонтальных ОЦ — вертикальных ОЦ	60 инструментов 30 инструментов	30–40 инструментов 20–24 инструментов
3. Максимальная частота вращения шпинделя	6000 об/мин	4500–5200 об/мин
4. Максимальная длина инструмента	350 мм	300 мм
5. Масса заготовки, устанавливаемой на стол	1000 кг	800 кг
6. Габариты станка	467 × 3980 × 3353	395 × 2250 × 2800
7. Bec	7750 кг	6600 кг
8. Коэффициент металлоемкости	8,04 ед./об.	3,7 ед./об.

Проведя несложный анализ габаритных размеров и массы станков, любому специалисту понятно, где выше жесткость, и, как следствие, размерная стойкость, а где ниже.

Поэтому в рамках нашей конференции, кроме обсуждения технических вопросов, надеемся обсудить и комплекс вопросов экономического плана.

УДК 621.9.02-192

МОДЕЛИРОВАНИЕ НАДЕЖНОСТИ РОБОТОТЕХНИЧЕСКИХ СИСТЕМ

М. И. Михайлов

Гомельский государственный технический университет имени П. О. Сухого, Республика Беларусь

Переориентация промышленности на выпуск широкого ассортимента продукции малыми сериями (партиями), в совокупности с постоянным снижением трудовых ресурсов, привела к изменению использованных ранее форм организации производства и применяемому оборудованию, т. е. к переходу от автоматизированных систем на основе аналогового управления к системам с числовым программным управлением (ЧПУ) [1]–[9]. Достижения в области микроэлектроники способствовали быстрому развитию этого направления в станкостроении и расширении номенклатуры станков с ЧПУ. Из исследований, выполненных в ФРГ, США, Швейцарии и других странах, известно, что эффективное время обработки на традиционных металлорежущих станках и станках с ЧПУ в случае участия человека (оператора) составляет только 6–10 % годового фонда рабочего времени. Известно также, что в структуре времени обработки деталей на основе традиционных технологий доля основного времени составляет только около 30 %, а оставшаяся часть приходится на вспомогательное и подготовительно-заключительное время [1], [2] и др.

Как известно, эффективность работы автоматизированного производства зависит от организации технологического процесса, т. е. от формирования и реализации потоков деталей и инструментов, а также от степени согласованности их взаимодействия. В свою очередь, эти потоки формируются в зависимости от степени интеграции оборудования и их можно разделить на участки станков с ЧПУ, гибкие производственные модули (ГПМ), робототехнические комплексы (РТК) и гибкие производственные системы (ГПС) [10]—[13].

Эффективным средством комплексной автоматизации производственных процессов в промышленности являются РТК. Для современных робототехнических комплексов надежность является необходимым условием их использования. Это качество тем важнее, чем сложнее и дороже система.

Современные тенденции обеспечения высокой надежности РТК следующие:

- использование высоконадежных структур РТК;
- использование надежных комплектных систем ЧПУ и приводов;
- органическое включение в управляющую систему подсистемы автоматической диагностики функционирования узлов, элементов, а также РТК в целом;
 - повышение надежности функционирования механических элементов РТК;
 - блочно-модульное построение узлов, элементов и систем.

При работе без резервирования элементов РТК эффективность его состояния характеризуется параметром $\gamma = \frac{\lambda}{11}$, а функция готовности будет иметь вид: