УЛУЧШЕНИЕ ХАРАКТЕРИСТИК МОБИЛЬНОГО СЕЛЬСКОХОЗЯЙСТВЕННОГО АГРЕГАТА ПОСРЕДСТВОМ МОДЕРНИЗАЦИИ МЕХАНИЗМА НАВЕСКИ ЭНЕРГОНОСИТЕЛЯ В РЕЖИМЕ ПАХОТЫ

И. П. Родзевич

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель В. Б. Попов

Способ соединения сельскохозяйственных машин и орудий с трактором зависит от их конструкции, назначения и способа агрегатирования. Тяговое сопротивление навесного оборудования определяет общую производительность трактора, а также нагруженность элементов механизма навески. В статье определены тяговые усилия при работе пахотного агрегата на различных почвах.

Ключевые слова: трактор, механизм навески, плуг, сила тягового сопротивления, реакция колеса, стойка плуга.

Конструкция устройств для навешивания машин зависит от расположения машины относительно трактора. Если машину навешивают сбоку или спереди трактора, то на его остове предусматривают посадочные места с отверстиями под болты крепления или специальные кронштейны. На самоходных шасси машины навешивают к продольным трубам рамы.

Механизм задней навески состоит из двух нижних продольных тяг и верхней центральной регулируемой тяги. Передними концами все тяги шарнирно связаны с остовом трактора, а задними концами – с навесной машиной [1].

Целью работы является определение силы тягового сопротивления плуга, действующей на механизм навески при различных коэффициентах удельного сопротивления почвы и изменении высоты стойки плуга.

На навесной плуг действуют: сила тяжести (вес плуга) P_6 , приложенная в точке S_6 , сила сопротивления плуга R и сила реакции на опорном колесе Q [2].

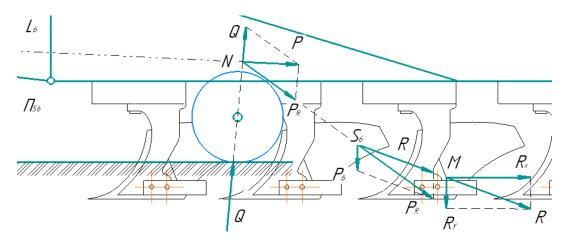


Рис. 1. Схема силового воздействия плуга на механизм навески

Сила тягового сопротивления движению P определяется из параллелограмма сил по выражению [3]:

$$P = \sqrt{(Q)^{2} + (P_{R})^{2} + 2QP_{R}\cos\beta},$$
(1)

где Q – сила реакции на опорном колесе;

$$Q = Q_{\nu}\sqrt{(1+\mu^2)},\tag{2}$$

 Q_{v} – вертикальная составляющая,

$$Q_{y} = \frac{P_{6}X_{S6} + R_{y}X_{M} - R_{x}|Y_{M}|}{X_{N} + \mu|Y_{N}|},$$
(3)

где μ – коэффициент потерь на перекатывание опорного колеса, μ = 0,15–0,2; β – угол между векторами сил P_R и Q.

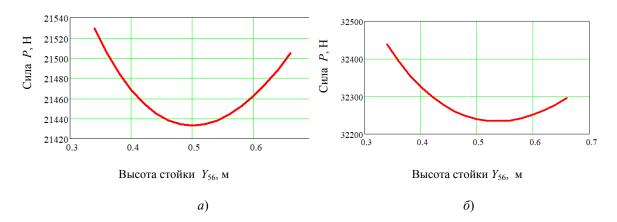
Сила P_R , учитывающая совместное действие силы тяжести и обобщенного сопротивления рабочих органов плуга:

$$P_{R} = \sqrt{(P_{6})^{2} + (R)^{2} + 2P_{6}R\cos\theta},$$
(4)

где θ – угол между векторами сил P_6 и R;

$$\theta = \operatorname{arctg} \frac{R_x}{R_v}.$$
 (5)

Силы R_y , R_x представляют горизонтальную и вертикальную проекции силы сопротивления плуга и вместе с силой P_6 создают моменты на плечах Y_M , X_M и X_{S6} , соответственно. Плечи X_N и Y_N учитывают моменты от силы Q_y относительно точки Π_{S6} .


В таблице представлены результаты расчета сил тягового сопротивления движения плуга при различных коэффициентах удельного сопротивления почвы (от $k = 35 \text{ кH/m}^2$ до $k = 35 \text{ кH/m}^2$).

Сила Р, Н					
$k = 35 \text{ kH/m}^2$	$k = 40 \text{кH/m}^2$	$k = 45 \text{ kH/m}^2$	$k = 50 \text{ kH/m}^2$	$k = 55 \text{ kH/m}^2$	
21530	24256	26983	29710	32438	
21506	24227	26949	29672	32395	
21485	24202	26920	29639	32357	
21469	24182	26896	29611	32325	
21455	24165	26876	29587	32299	
21445	24152	26860	29569	32277	
21438	24143	26848	29554	32260	

Окончание

Сила <i>P</i> , Н					
$k = 35 \text{ kH/m}^2$	$k = 40 \text{ kH/m}^2$	$k = 45 \text{ kH/m}^2$	$k = 50 \text{ kH/m}^2$	$k = 55 \text{ kH/m}^2$	
21434	24137	26840	29544	32248	
21433	24134	26835	29537	32239	
21434	24134	26833	29534	32235	
21438	24136	26835	29534	32234	
21444	24141	26839	29538	32236	
21452	24149	26846	29544	32242	
21463	24159	26856	29553	32251	
21475	24171	26868	29565	32263	
21489	24185	26882	29580	32278	
21505	24202	26899	29597	32295	

На рис. 2 представлены графики зависимости силы тягового сопротивления при различных коэффициентах удельного сопротивления почвы от изменения высоты стойки плуга Y_{56} .

Рис. 2. График изменения силы тягового сопротивления от высоты стойки плуга при различных коэффициентах удельного сопротивления почвы: $a-k=35 \text{ кH/m}^2; \ \textit{б}-k=55 \text{ кH/m}^2$

Из таблицы и рис. 2 видно, что величина силы тягового сопротивления уменьшается до некоторого экстремального значения с увеличением высоты стойки, после чего начинает увеличиваться. Представляет интерес нахождение оптимальной высоты стойки, при котором сила тягового сопротивления принимает минимальное значение.

Рассмотренная методика позволяет выбирать оптимальные геометрические параметры механизма навески трактора и крепления пахотного орудия (плуга) для снижения нагруженности, особенно в условиях динамических нагрузок при выполнении технологических процессов обработки почвы.

266 Секция VIII. Физические и математические методы исследования

Литература

- 1. Попов, В. Б. Математическое моделирование подъемно-навесных устройств мобильных энергетических средств / В. Б. Попов. Гомель: ГГТУ им. П. О. Сухого, 2016. 251 с.: ил.
- 2. Попов, В. Б. Влияние параметров механизма навески и плуга на тягово-энергетические по-казатели пахотного агрегата / В. Б. Попов // Вестник Гомельского государственного технического университета имени П. О. Сухого. − 2013. − № 4. − С. 58–64.
- 3. Попов, В. Б. Аналитическое определение тяговой нагрузки трактора со стороны агрегатируемого навесного плуга / В. Б. Попов // Вестник Гомельского государственного технического университета имени П. О. Сухого. − 2021. − № 2. − С. 62–68.