АНАЛИЗ ПРОСТРАНСТВЕННО-ВРЕМЕННЫХ ВОЗМУЩЕНИЙ ЛИНИИ РОСТА ДЕНДРИТА В ПЕРЕОХЛАЖДЕННОМ РАСПЛАВЕ

А. А. Бугримов

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель И. А. Концевой

В экспериментальных и теоретических работах было установлено, что при достаточно больших переохлаждениях восстанавливается дендритный режим роста [1]. Поэтому представляют интерес такие явления, как расщепление вершины дендрита, образование боковой ветви и другие физические ситуации, сопровождающие эволюцию фазовой границы. В работе изучено влияние волновых возмущений на линии роста на свойства дендритного режима роста кристалла в расплавах германия и серебра.

Ключевые слова: переохлажденный расплав, дендритный рост, скорость фазовой границы, морфологические свойства фазовой границы кристаллизации.

Фазовую границу кристаллизации (ФГК) задаем плоской линией сильного разрыва x - F(y,t) = 0, где t – время; x – координата вдоль оси симметрии в сторону твердой фазы; y – поперечная декартова координата. Расплав находится в однородном отрелаксировавшем состоянии. Нормаль n границы образует с осью x угол θ : $\cos \theta = 1/G$, $G = (1 + (\partial F/\partial y)^2)^{1/2}$. ФГК перемещается со скоростью N справа налево (N = Nn, N < 0), и на ее вершине $\partial F/\partial y = 0$, $\cos \theta = 1$. По мере удаления от вершины $\theta \to \pi/2$. Угол заострения линии роста равен $\theta_1 = (\pi/2) - \theta$.

На ФГК имеем замкнутую систему трех граничных условий.

I. Баланс энергии

$$q_{j} = Nc(T_{j} - T_{*}) - Q, \quad Q = L\left(N + \gamma_{j} \frac{\partial N}{\partial t}\right), \quad N = (\partial F / \partial t) / G.$$
 (1)

Здесь звездочкой отмечены параметры расплава перед ФГК; индекс j указывает, что значение функции определено на правой стороне сильного разрыва, в твердой фазе; q_j — нормальная к границе составляющая вектора теплового потока; расплав находится в однородном отрелаксировавшем состоянии: $q_* \equiv 0$, $T_* \equiv \text{const.}$

II. Кинетическая связь

$$|N| = \mu (T_e - T_i), \quad T_e = T_c [1 - (UK/L)]$$
 (2)

определяет нормальный механизм роста из расплава. Здесь μ — кинетический коэффициент роста; $K = \left(\partial^2 F / \partial y^2 \right) / G^3$ — средняя кривизна границы.

III. Отклонение температуры кристалла T_j от равновесного значения T_c определяется зависимостью от локального угла наклона θ :

$$(T_c - T_i) = (\cos \theta)^{\delta} B, \quad \delta \ge 1, \quad B = \text{const.}$$
 (3)

Здесь $B = T_c - T_j(\theta = 0)$ — переохлаждение ФГК на вершине дендрита; μB — модуль характерной скорости роста на вершине; δ — параметр неоднородности переохлаж-

дения Φ ГК вдоль линии роста. Остальные обозначения — общепринятые. Изучаем физически содержательный вариант $\delta = 3$, позволяющий найти функции N, T_j , q_j — в конечной форме [см. (1)–(3)]. Теплофизические свойства расплава и кристалла принимаем постоянными.

Уравнение роста записываем в виде [2]:

$$\partial^2 F / \partial y^2 = \alpha B + \varphi (\partial F / \partial t) \left[1 + (\partial F / \partial y)^2 \right], \quad \alpha = L / (UT_c), \quad \varphi = \alpha / \mu. \tag{4}$$

Точное решение этого дифференциального уравнения запишем в виде:

$$F(y,t) = A_1 t + A_2(y), \quad A_1 \equiv \text{const} < 0, \quad A_2(y) = \frac{1}{a^2} \ln \left[\left(\frac{1 + \exp(2aby)}{2} \right) \right] - \frac{b}{a} y,$$
 (5)

$$a = (-\varphi A_1)^{1/2} > 0$$
, $b = (\alpha B + \varphi A_1)^{1/2} > 0$, $-\mu B < A_1 < 0$.

Это решение определяет стационарный профиль, перемещающийся с постоянной скоростью. При $y \to \infty$ этот профиль принимает форму клина

$$F^{0} = A_{1}t + A_{2}y, \quad A_{1} = -\mu B/(1 + A_{2}^{2}) < 0, \quad A_{2} \equiv \text{const},$$
 (6)

который также является точным решением уравнения (4).

Подробное исследование уравнения (4) выполнено в работах [3–7]. После линеаризации этого уравнения на точном решении (6) получаем:

$$F(y,t) = F^{0}(y,t) + f(y,t), \quad \partial^{2} f / \partial y^{2} = B_{1}(\partial f / \partial y) + B_{2}(\partial f / \partial t), \tag{7}$$

$$B_{1} = 2\varphi A_{1} A_{2} < 0, \quad B_{2} = (1 + A_{2}^{2})\varphi > 0.$$

Здесь f(y,t) — малая добавка к основному решению (6). Далее выполняем сдвиг по координате, $y \to y - Y_1 \ge 0$, где $Y_1 > 0$ — координата, соответствующая поперечному сечению клина в начальный момент t = 0.

Решение уравнения (7) запишем в виде [8]:

$$f/H = \frac{1}{t^{1/2}} \exp\left(h_1 t + h_2 y - \frac{y^2 B_2}{4t}\right), \quad y \ge 0, \quad t > 0,$$
 (8)

где H — произвольная малая постоянная. Исходное возмущение линии роста локализовано в точке y=0 при t=+0. При каждом конечном значении y>0 функция f(y,t) в решении (8) является немонотонной по отношению к аргументу t: $\partial f/\partial t=0$ вдоль линии $y_m(t)$, на которой отношение f/H достигает максимума по t>0.

Скорость перемещения этой линии при $t \to \infty$ определяется выражением

$$V_m(t \to \infty) = \frac{2\sqrt{-h_1}}{\sqrt{B_2}} = \frac{-2A_1A_2}{(1+A_2^2)}$$
 (9)

и является немонотонной функцией аргумента $A_2 > 0$, достигающей максимума при $A_2 = 1$.

Приведем результаты числовых расчетов для германия и серебра. Теплофизические свойства расплава и кристалла следующие:

Германий, Ge: $T_c=1210\,\mathrm{K}$, $L=2.54\cdot10^9\,\mathrm{Дж/m^3}$, $c=2.048\cdot10^6\,\mathrm{Дж/(m^3\cdot K)}$, $\lambda=17.4\,\mathrm{Bt/(m\cdot K)}$, $U=0.6\,\mathrm{Дж/m^2}$, $\gamma=2.002\cdot10^{-7}\,\mathrm{c}$, $\mu=1.08\,\mathrm{m/(K\cdot c)}$, $T_*=991\,\mathrm{K}$, $N_b=3.5\,\mathrm{m/c}$.

Серебро, Ag: $T_c=1233,8~\mathrm{K}$, $L=1,1\cdot10^9~\mathrm{Дж/m^3}$, $c=2,62\cdot10^6~\mathrm{Дж/(m^3\cdot K)}$, $\lambda=379~\mathrm{Bt/(m\cdot K)}$, $U=0,12~\mathrm{Дж/m^2}$, $\mu=1,24~\mathrm{m/(K\cdot c)}$, $T_*=1157,8~\mathrm{K}$, $N_b=14,7~\mathrm{m/c}$.

Пространственно-временной портрет линии роста при точечном возмущения (8) для указанных металлов продемонстрирован на рис. 1. Все расчеты выполнены в безразмерных величинах. Связь между безразмерными и размерными параметрами имеет вид:

$$A_1 \rightarrow (A_1 t_h / y_h) = (-N_h t_h / y_h), \quad B_1 \rightarrow B_1 y_h, \quad B_2 \rightarrow (B_2 y_h^2 / t_h).$$

Масштабы величин, применяемые при обезразмеривании, отмечены индексом b: $t_b = 10^{-7}\,$ с, $y_b = 10^{-6}\,$ м. Относительная величина возмущения f/H демонстрирует значительные количественные различия между указанными металлами.

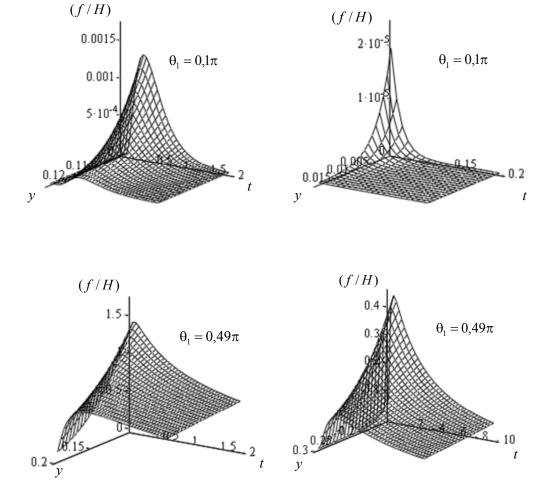


Рис. 1. Пространственно-временной портрет линии роста при точечном возмущении: левый столбец – германий; правый столбец – серебро

Литература

- 1. Strickland, J. On Directional Dendritic Growth and Primary Spacing A Review / J. Strickland, B. Nenchev // Crystals. 2020. N 10 (7). P. 627.
- 2. Шабловский, О. Н. Форма поверхности роста и предвестники ветвления дендрита в переохлажденном расплаве / О. Н. Шабловский, Д. Г. Кроль // Успехи прикладной физики. 2018. Т. 6, № 4. С. 316–324.
- 3. Шабловский, О. Н. Кинетика роста вершины дендрита в глубоко переохлажденном расплаве. Часть 1. Уравнение фазовой границы кристаллизации / О. Н. Шабловский // Успехи прикладной физики. 2013. Т. 1, № 6. С. 680–685.
- 4. Шабловский, О. Н. Кинетика роста вершины дендрита в глубоко переохлажденном расплаве. Часть II. Аналитическая структура возмущений линии роста / О. Н. Шабловский // Успехи прикладной физики. − 2014. − Т. 2, № 1. − С. 12−17.
- 5. Шабловский, О. Н. Динамика неустойчивости волновых возмущений и боковое ветвление дендрита в переохлажденном расплаве / О. Н. Шабловский, Д. Г. Кроль // Успехи прикладной физики. 2022. Т. 10, № 2. С. 189–202.
- 6. Шабловский, О. Н. Кинетические свойства вершины дендрита в переохлажденном расплаве чистого металла / О. Н. Шабловский, И. А. Концевой // Вестник Гомельского государственного технического университета имени П. О. Сухого. − 2024. № 1. С. 5–14.
- 7. Шабловский, О. Н. Эволюция и разрушение линии роста кристалла в переохлажденном расплаве / О. Н. Шабловский // Вестник ЮУрГУ. Серия «Математика. Механика. Физика». 2025. Т. 17, № 1. С. 61–75.
- 8. Справочник по точным решениям уравнений тепло- и массо переноса / А. Д. Полянин, А. В. Вязьмин, А. И. Журов, Д. А. Казенин. М. : Факториал, 1998. 368 с.

ОПТИМИЗАЦИЯ РЕЖИМОВ МАГНИТНО-АБРАЗИВНОЙ ОБРАБОТКИ ДЛЯ СТАЛИ 40X

Д. А. Шатон

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель М. И. Лискович

Рассмотрены результаты исследований по оптимизации режимов магнитно-абразивной обработки для стали 40X.

Ключевые слова: магнитно-абразивная обработка, повышение производительности и качества обработки.

В данной статье рассматриваются результаты исследований по оптимизации режимов магнитно-абразивной обработки (МАО) для стали 40Х. Магнитно-абразивная обработка является современным методом, который сочетает в себе преимущества магнитного поля и абразивных материалов, позволяя достигать высоких результатов в обработке сложнопрофильных деталей. Целью работы является повышение производительности и качества обработки, что особенно актуально в условиях современного машиностроения, где требования к достоверности и долговечности изделий постоянно растут.

Исследования показывают, что использование борированных порошков в процессе МАО позволяет достичь высокой производительности обработки. Экспериментальные данные указывают, что скорость обработки может достигать 15 мг/мин, что является значительным улучшением по сравнению с традиционными методами. Это связано с тем, что борированные порошки обладают высокими абразивными свойствами и способствуют более эффективному снятию материала с обрабатываемой поверхности.