СЕКЦИЯ VIII ФИЗИЧЕСКИЕ И МАТЕМАТИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ СЛОЖНЫХ СИСТЕМ

АНАЛИТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ ОСОБЫХ ТОЧЕК ПРИ ИССЛЕДОВАНИИ ПЛОСКИХ РЫЧАЖНЫХ МЕХАНИЗМОВ СЛОЖНОЙ СТРУКТУРЫ

А. В. Котов

ОАО «Сейсмотехника», г. Гомель, Республика Беларусь Научный руководитель Д. Г. Кроль

Представлен аналитический способ определения положения особых точек плоских рычажных механизмов с группой Ассура III класса. Знание координат этих точек позволяет применить классические методы исследования механизмов II класса для определения кинематических и силовых характеристик.

Ключевые слова: рычажный механизм, особая точка Ассура, кинематический анализ, вектор.

Метод особых точек является одним из основных методов кинематического исследования рычажных механизмов с группой Ассура III класса. Данный метод основан на том, что в каждой группе Ассура III класса существуют особые точки, которые принадлежат базисному звену группы и находятся как точка пересечений линий двух любых поводков группы Ассура III класса [1, 2]. Особые точки нашли широкое применение при графоаналитическом методе исследования данных механизмов благодаря своей простоте и наглядности. Относительно невысокая точность и необходимость использования графического построения каждый раз для нового положения рычажного механизма существенно увеличивает трудозатраты при выполнении кинематического и силового анализа механизма и ограничивают применение данного метода на практике. В последнее время в связи с широким внедрением математических пакетов и языков программирования произошел заметный скачок в применении аналитических методов исследования плоских рычажных механизмов сложной структуры [3, 4]. Однако метод особых точек не нашел своей аналитической реализации и остается актуальной научной и инженерной задачей.

Цель исследования – определение аналитическим способом координат особых точек группы Ассура III класса.

Рассмотрим плоский рычажный механизм с группой Ассура III класса, кинематическая схема которого приведена на рис. 1. Данный механизм состоит из начального механизма I (0,1) и структурной группы Ассура III (2-5). На рис. 1 показана графическая интерпретация определения положения особых точек базисного звена 3 группы Ассура III класса, которые находятся на пересечении продолжений линий двух его любых поводков: S_1 (на пересечении звеньев AB и FC), S_2 (на пересечении звеньев FC и ED) и S_3 (на пересечении звеньев ED и AB).

Будем считать, что для данного механизма выполнена 1-я задача кинематического анализа: известны координаты всех характерных точек рассматриваемого рычажного механизма. Определим аналитически параметры векторов трех рассматриваемых особых точек

Для аналитического определения особых точек будут использоваться теоретические сведения из векторной алгебры и аналитической геометрии [5]. Пусть в рассматриваемой декартовой системе координат имеем два непараллельных друг другу вектора AB и CD (для упрощения записи верхний значок вектора « \rightarrow » при описании в тексте символьных обозначений будет опущен), начало и конец которых заданы двумя радиус-векторами (соответственно r_A , r_B и r_C , r_D , рис. 2). Требуется найти радиус-вектор r_S , характеризующий положение точки r_S . В общем случае данная точка может находиться на продолжении векторов r_S 0 (рис. 2, r_S 0) или лежать на их пересечении (рис. 2, r_S 0).

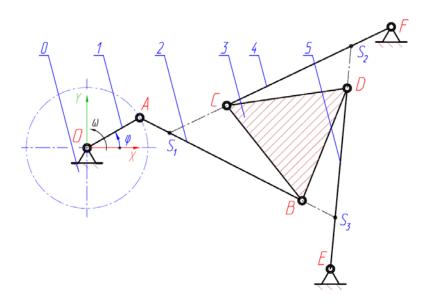
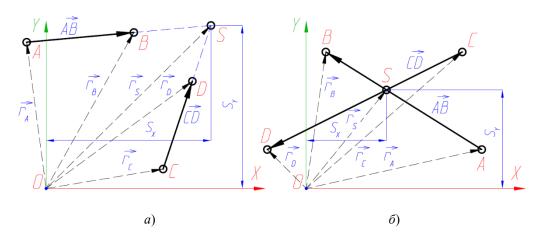



Рис. 1. Схема определения положения особых точек базисного звена

Рис. 2. Графическое пояснение к нахождению радиус-вектора точки пресечения двух векторов: a – на продолжении векторов; б – на пересечении векторов

Из аналитической геометрии известно уравнение прямой, проходящей через две точки [5], используя которое и ряд математических преобразований можно найти на плоскости точку пересечения двух непараллельных прямых. Указанное уравнение

можно представить в более компактной форме, применив известные правила векторного и скалярного произведения, получив выражение для нахождения радиусвектора точки пересечения двух векторов, каждый из которых задан двумя радиусвекторами. Приведем здесь итоговую формулу для определения радиус-вектора точки S пересечения двух векторов (рис. 2):

$$\vec{r}_{S} = \frac{(\vec{r}_{B} - \vec{r}_{A})((\vec{r}_{D} \times \vec{r}_{C})\vec{e}_{Z}) - (\vec{r}_{D} - \vec{r}_{C})((\vec{r}_{B} \times \vec{r}_{A})\vec{e}_{Z})}{(\vec{r}_{D} - \vec{r}_{C}) \times (\vec{r}_{B} - \vec{r}_{A})\vec{e}_{Z}},$$
(1)

где r_A , r_B , r_C и r_D — соответственно радиус-векторы точек первого и второго вектора; e_Z — единичный вектор (орт) для неподвижной оси Z принятой декартовой системы координат.

Выражение (1) является универсальным и может применяться для нахождения радиус-вектора r_S точки пересечения двух векторов, лежащей как на их продолжении (рис. 2, a), так и на их пересечении (рис. 2, δ).

Приведем здесь результаты аналитического способа определения особых точек для рассматриваемого рычажного механизма (рис. 1) со следующими входными параметрами (размерность всех величин здесь и далее указана в миллиметрах):

$$L_{OA} = 100; \ L_{AB} = 300; \ L_{BD} = 200; \ L_{DE} = 300; \ L_{BC} = 200; \ L_{CF} = 300; \ L_{CD} = 200;$$
 $x_F = 500; \ y_F = 200; \ x_E = 400; \ y_E = -200; \ \phi = 30^\circ.$

Из решения 1-й задачи кинематики находим следующие векторы характерных точек структурной группы Ассура III класса (представлены в транспонированном виде):

$$\vec{A}(30^{\circ}) = (86,60 \quad 50 \quad 0)^{T}; \ \vec{B}(30^{\circ}) = (353,47 \quad -80,04 \quad 0)^{T}; \ \vec{E} = (400 \quad -200 \quad 0)^{T};$$

$$\vec{D}(30^{\circ}) = (427,55 \quad 98,73 \quad 0)^{T}; \ \vec{F} = (500 \quad 200 \quad 0)^{T}; \ \vec{C}(30^{\circ}) = (229,62 \quad 70,00 \quad 0)^{T}.$$

Тогда радиус-векторы особых точек, рассчитанные с помощью выражения (1), имеют следующие значения:

$$\vec{S}_1(30^\circ) = (135,65 \ 24,81 \ 0)^T; \ \vec{S}_2(30^\circ) = (433,97 \ 168,25 \ 0)^T;$$

$$\vec{S}_3(30^\circ) = (407,84 \ -114,96 \ 0)^T.$$

Был выполнен сравнительный анализ определения особых точек представленным аналитическим способом и для классического метода [1], используя графические построения в среде КОМПАС-3D. Полученные результаты практически полностью совпадают, а полученная погрешность находится в пределах погрешности графического построения.

Представленный аналитический способ определения радиус-векторов особых точек рычажного механизма с группой Ассура III класса может быть алгоритмизирован в любом математическом пакете. Например, для математического пакета

MathCAD, выражение (1) можно представить в виде следующей пользовательской функции *Cross*:

$$Cross(\vec{r}_{A}, \vec{r}_{B}, \vec{r}_{C}, \vec{r}_{D}) = \frac{(\vec{r}_{B} - \vec{r}_{A})((\vec{r}_{D} \times \vec{r}_{C})\vec{e}_{Z}) - (\vec{r}_{D} - \vec{r}_{C})((\vec{r}_{B} \times \vec{r}_{A})\vec{e}_{Z})}{(\vec{r}_{D} - \vec{r}_{C}) \times (\vec{r}_{B} - \vec{r}_{A})\vec{e}_{Z}}.$$
(2)

Для данной функции входными параметрами будут являться радиус-векторы точек шарниров двух звеньев рычажного механизма, а выходным — рассчитанный радиус-вектор особой точки. Используя трижды указанную функцию (2), находим положение радиус-векторов трех особых точек для рассматриваемого рычажного механизма:

$$\vec{S}_{1}(\varphi) = Cross(\vec{A}(\varphi), \vec{B}(\varphi), \vec{F}, \vec{C}(\varphi)); \quad \vec{S}_{2}(\varphi) = Cross(\vec{E}, \vec{D}(\varphi), \vec{F}, \vec{C}(\varphi));$$
$$\vec{S}_{3}(\varphi) = Cross(\vec{A}(\varphi), \vec{B}(\varphi), \vec{E}, \vec{D}(\varphi)).$$

Предложенный аналитический способ позволяет доступно и наглядно определять положение особых точек группы Ассура III класса. Данный способ легко поддается формализации и алгоритмизации с применением математических пакетов (MathCAD, Maple, Mathematica и др.) и может найти свое применение для решения 2-й и 3-й задачи кинематического, а также динамического анализа механизма.

Литература

- 1. Артоболевский, И. И. Теория механизма и машин : учебник / И. И. Артоболевский. 4-е изд., перераб. и доп. / Репринтное воспроизведение издания 1988 г. М. : Транспорт. компания, 2023. 640 с.
- 2. Кошель, С. А. Определение ускорений точек сложных плоских механизмов графоаналитическим способом / С. А. Кошель, А. В. Кошель // Вестник Витебского государственного технологического университета. 2015. № 2 (29). С. 55–62.
- 3. Кіницький, Я. Т. Аналітичне дослідження кінематики механізмів III класу з використанням системи MathCAD / Я. Т. Кіницький, М. В. Марченко, В. О. Харжевський // Вісник Хмельницького національного університету. Технічні науки. 2013. № 6 (207). С. 7–10.
- 4. Мацюк, И. Н. Кинематический анализ плоских рычажных механизмов высоких классов в программе MathCAD / И. Н. Мацюк, В. М. Третьяков, Э. М. Шляхов // Теория механизмов и машин. -2012. -T. 10, № 1 (19). -C. 65–70.
- 5. Корн, Г. А. Справочник по математике для научных работников и инженеров: Определения. Теоремы. Формулы / Г. Корн, Т. Корн ; [пер. И. Г. Арамановича (ред. пер.) и др.]. 6-е изд., стер. СПб. [и др.] : Лань, 2003. 831 с.

ИССЛЕДОВАНИЕ ПРИМЕНЕНИЯ СИСТЕМ АВТОМАТИЗИРОВАННОГО ПРОЕКТИРОВАНИЯ ДЛЯ РАСЧЕТА И ПОСТРОЕНИЯ КОНИЧЕСКИХ ЗУБЧАТЫХ КОЛЕС

А. Р. Рахматулаев

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель С. И. Прач

Системы автоматизированного проектирования (САПР) — это незаменимый инструмент в различных областях науки, техники и образования, предназначенный для создания, редактирования, анализа и оптимизации проектов. Системы AutoCAD, Bricscad, Autodesk Inventor, SolidWorks, SolidEdge, Komnac-3D, T-FLEX, PTC Creo, NX и другие пользуются осо-