В основе архитектуры лежит четкое разграничение между номенклатурой препаратов *Medicine*, их фактическим наличием *Inventory* и продажами. За реализацию гибкого и достоверного контроля за товарооборотом отвечают таблицы *Receipt* и *ReceiptItem*.

Каждый препарат в справочнике *Medicine* описывается с указанием фармакологической группы, действующего вещества и признака принадлежности к средствам первой необходимости. Эта информация передается в *Inventory*, где уже отслеживаются реальные поступления: дата прихода, срок годности, количество, необходимость рецепта, а также принадлежность медикамента к рецептурным.

Когда происходит продажа, создается *Receipt*, связанный с конкретными *ReceiptItem*, в которых указывается, какой именно товар со склада был отпущен. При этом, если товар требует рецепт, в *ReceiptItem* обязательно указывается привязанный *Prescription*, что исключает возможность неконтролируемого отпуска.

Таким образом, внедрение разрабатываемого web-приложения для автоматизации учета и мониторинга товародвижения на аптечном предприятии обеспечит эффективное управление товарными запасами и продажами, позволит автоматизировать процесс составления отчетности и анализа данных, а также предоставит удобный доступ к информации для сотрудников аптеки, менеджеров склада и администрации предприятия, обеспечивающих контроль за товародвижением и соблюдением норм.

Литература

- 1. Сидорика, М. Д. Введение в язык программирования С# / М. Д. Сидорика // Основы программирования на языке С#. URL: https://axideli.gitbook.io/osnovy-programmirovaniya-na-yazyke-c (дата обращения: 13.03.2025).
- 2. Сэйнти, К. Blazor в действии: руководство / К. Сэйнти ; пер. с англ. Д. А. Беликовой. М. : ДМК Пресс, 2023. 380 с.
- 3. Стиллмен, Э. Изучаем С# / Э. Стиллмен, Дж. Грин ; пер. с англ. Е. Матвеев. 4-е изд. СПб. : Питер, 2022. 816 с.

КОМПЬЮТЕРНАЯ МОДЕЛЬ АНАЛИЗА ИЗОБРАЖЕНИЯ СТЕРЕОКАМЕРЫ ДЛЯ СИСТЕМЫ УПРАВЛЕНИЯ СИЛОСОПРОВОДОМ КОРМОУБОРОЧНОГО КОМБАЙНА

Е. И. Романюк

Учреждение образования «Гомельский государственный технический университет имени П. О. Сухого», Республика Беларусь

Научный руководитель Т. А. Трохова

Разработана система автоматизации управления силосопроводом кормоуборочного комбайна на основе технологий стереозрения и цифрового двойника. Отмечено, что использование стереокамеры позволяет строить карты глубины для точного определения геометрии кузова транспортного средства и контроля заполнения силосной массой. Выделено, что интеграция с цифровым двойником, реализованным в Unity, обеспечивает тестирование алгоритмов управления в виртуальной среде, имитирующей полевые условия.

Ключевые слова: компьютерное зрение, стереозрение, цифровой двойник, кормоуборочный комбайн, карта диспаратности.

Современные технологии цифрового зрения открывают новые возможности для повышения уровеня автоматизации сельскохозяйственной техники. Внедрение цифрового двойника в процессе моделирования работы комбайна в полевых условиях

предоставляет возможность тестирования алгоритмов управления и оптимизации рабочих параметров без необходимости проведения дорогостоящих и трудоемких полевых испытаний. В докладе рассмотрено применение технологий компьютерного зрения и цифровых двойников для автоматизации управления силосопроводом кормоуборочного комбайна.

Цифровой двойник (*Digital Twin*) — это виртуальная модель физического объекта или системы, которая динамически отражает его поведение и состояние в реальном времени. Он строится на основе данных, получаемых с различных датчиков и измерительных систем, и используется для анализа, прогнозирования и оптимизации работы реального объекта. В сельском хозяйстве цифровой двойник может служить мощным инструментом для тестирования новых технологий, оптимизации процессов и повышения надежности оборудования без необходимости выезда на полевые испытания.

Внедрение цифрового двойника в проект управления кормоуборочным комбайном позволяет осуществлять моделирование рабочих процессов с высокой степенью детализации. В виртуальной среде можно воспроизводить различные сценарии работы техники: изменение погодных условий, плотности растительности, типа почвы и других параметров, которые трудно контролировать в реальной среде. Это предоставляет разработчикам и инженерам возможность проводить многократные тестирования алгоритмов без риска повредить технику и без дополнительных затрат на топливо и обслуживание.

Разработанный цифровой двойник в среде *Unity* включает в себя имитацию всего рабочего процесса комбайна: от захвата растительной массы до ее подачи в транспортные средства. Он состоит из трехмерных моделей поля, кормоуборочного комбайна, транспортных средств, а также систем управления, датчиков и исполнительных механизмов. Благодаря высокой степени реализма, модель учитывает физику движения техники, взаимодействие с различными типами растительности и отклик системы управления на команды оператора или автоматики.

Одним из преимуществ такого подхода является возможность создания цикла непрерывного улучшения: данные, полученные в виртуальной среде, используются для корректировки алгоритмов, которые затем тестируются в симуляции и только после этого внедряются в реальную технику. Это значительно ускоряет цикл разработки и повышает надежность внедряемых решений.

Кроме того, цифровой двойник открывает возможности для обучения операторов в симулированной среде, что особенно актуально в условиях дефицита квалифицированных кадров. Оператор может отработать управление техникой в различных условиях, изучить поведение системы при ошибках или нестандартных ситуациях и тем самым повысить уровень своей подготовки.

Разработанный цифровой двойник представляет собой виртуальную модель, которая включает в себя следующие компоненты: поле, транспортные средства, кормоуборочный комбайн и его основные механизмы, такие как система подачи и выброса измельченной массы. Данная модель позволяет имитировать различные сценарии работы комбайна, включая режим параллельной разгрузки, где:

- комбайн движется линейно вдоль участка поля с постоянной скоростью;
- транспортное средство (самосвал) маневрирует со смещениями (вперед, назад, влево, вправо) для синхронизации с силосопроводом и оптимального заполнения кузова.

Такой сценарий учитывает динамическое взаимодействие техники, что особенно важно для точности наведения силосопровода; минимизации потерь корма; тестирования устойчивости. На рис. 1 приведен фрагмент видеоролика цифрового двойника, реализованного в среде *Unity*.

Puc. 1. Фрагмент видеоролика цифрового двойника, реализованного в среде *Unity*.

Одной из ключевых технологий анализа окружающей среды в рассматриваемой системе является стереозрение, основанное на сравнении изображений, полученных с двух камер, расположенных с известным базовым расстоянием между ними. Стереозрение — это процесс извлечения трехмерной информации из нескольких двухмерных изображений путем анализа смещения (диспаратности) одинаковых точек сцены на изображениях левого и правого каналов. Это смещение напрямую связано с глубиной: чем ближе объект к камере, тем больше его диспаратность.

Для реализации этой технологии необходима процедура ректификации, которая позволяет привести изображения к такой форме, при которой соответствующие точки находятся на одной горизонтальной строке. Это существенно упрощает задачу поиска соответствий. Существует два основных подхода к ректификации. Калиброванная ректификация, при которой используются заранее известные параметры камер, полученные в процессе калибровки. Она обеспечивает высокую точность за счет учета внутренней геометрии камер (фокусное расстояние, оптический центр, дисторсия и др.). Некалиброванная ректификация — это когда соответствия между изображениями устанавливаются без предварительного знания параметров камер. Этот метод опирается на вычисление фундаментальной матрицы на основе сопоставленных ключевых точек и последующее преобразование изображений с использованием проективных матриц.

После ректификации выполняется поиск соответствий между изображениями для построения карты диспаратности. Этот этап является вычислительно затратным и может выполняться как с помощью традиционных алгоритмов (например, блокового сопоставления, Semi-Global Matching), так и с использованием нейросетевых методов, обученных на синтетических и реальных стереоданных.

Полученная карта диспаратности преобразуется в карту глубины по следующей формуле (1):

$$Z = \frac{Bf}{d},\tag{1}$$

где Z – глубина (расстояние до объекта); B – базовое расстояние между камерами; f – фокусное расстояние; d – диспаратность.

Современные реализации стереозрения в реальном времени используют аппаратное ускорение (GPU) и оптимизированные библиотеки (например, OpenCV, CUDA — совместимые движки), что позволяет применять методику в условиях ограниченных ресурсов, типичных для встроенных систем сельскохозяйственной техники.

Применение этой технологии в системе управления силосопроводом обеспечивает точное определение положения и формы кузова транспортного средства, позволяет контролировать степень его заполнения, избегать перерасхода или недогрузки, а также адаптировать алгоритмы подачи материала в зависимости от текущей конфигурации сцены.

На рис. 2 представлена визуализация зависимости между диспаратностью и глубиной. Эта зависимость нелинейна, что требует особенно точного измерения диспаратности для близко расположенных объектов.

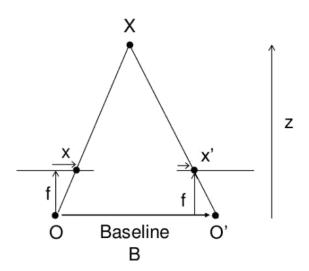


Рис. 2. Визуализация соотношения

Именно этот метод был применен при разработке компьютерной модели и позволил запрограммировать точное определение расстояния до объектов и создание карты глубины, что важно для автоматизации управления силосопроводом. Кроме того, система дает возможность выделять контуры зоны разгрузки и оценивать процент загрузки транспортной техники, что способствует более точному контролю процесса подачи и распределения корма. Особое внимание при разработке уделено построению карт диспаритетов, необходимых для оптимизации траектории подачи силосной массы.

Таким образом, применение компьютерного зрения и цифрового двойника в системах автоматизированного управления способствует повышению точности работы техники, снижению потерь силосной массы, а также оптимизации трудозатрат. Расширение возможностей системы будет идти в направлении более точного распознавания динамических объектов, управления силосопроводом и адаптации к различным эксплуатационным условиям.